Corianas commited on
Commit
0f35e7f
·
1 Parent(s): 265c46f

llm-plugin

Browse files
Files changed (2) hide show
  1. llm_chargpt.py +339 -0
  2. pyproject.toml +6 -0
llm_chargpt.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import llm
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import functional as F
5
+ import math
6
+ from dataclasses import dataclass
7
+ import pickle
8
+
9
+ import os
10
+
11
+ @llm.hookimpl
12
+ def register_models(register):
13
+ register(CharGPT())
14
+
15
+ # @torch.jit.script # good to enable when not using torch.compile, disable when using (our default)
16
+ def new_gelu(x):
17
+ """
18
+ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
19
+ Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
20
+ """
21
+ return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
22
+
23
+ class LayerNorm(nn.Module):
24
+ """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
25
+
26
+ def __init__(self, ndim, bias):
27
+ super().__init__()
28
+ self.weight = nn.Parameter(torch.ones(ndim))
29
+ self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
30
+
31
+ def forward(self, input):
32
+ return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
33
+
34
+
35
+ class CausalSelfAttention(nn.Module):
36
+
37
+ def __init__(self, config):
38
+ super().__init__()
39
+ assert config.n_embd % config.n_head == 0
40
+ # key, query, value projections for all heads, but in a batch
41
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
42
+ # output projection
43
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
44
+ # regularization
45
+ self.attn_dropout = nn.Dropout(config.dropout)
46
+ self.resid_dropout = nn.Dropout(config.dropout)
47
+ self.n_head = config.n_head
48
+ self.n_embd = config.n_embd
49
+ self.dropout = config.dropout
50
+ # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary
51
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and self.dropout == 0.0
52
+ if not self.flash:
53
+ # print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0")
54
+ # causal mask to ensure that attention is only applied to the left in the input sequence
55
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
56
+ .view(1, 1, config.block_size, config.block_size))
57
+
58
+ def forward(self, x):
59
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
60
+
61
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
62
+ q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
63
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
64
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
65
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
66
+
67
+ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
68
+ if self.flash:
69
+ # efficient attention using Flash Attention CUDA kernels
70
+ y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=True)
71
+ else:
72
+ # manual implementation of attention
73
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
74
+ att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
75
+ att = F.softmax(att, dim=-1)
76
+ att = self.attn_dropout(att)
77
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
78
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
79
+
80
+ # output projection
81
+ y = self.resid_dropout(self.c_proj(y))
82
+ return y
83
+
84
+ class MLP(nn.Module):
85
+
86
+ def __init__(self, config):
87
+ super().__init__()
88
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
89
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
90
+ self.dropout = nn.Dropout(config.dropout)
91
+
92
+ def forward(self, x):
93
+ x = self.c_fc(x)
94
+ x = new_gelu(x)
95
+ x = self.c_proj(x)
96
+ x = self.dropout(x)
97
+ return x
98
+
99
+ class Block(nn.Module):
100
+
101
+ def __init__(self, config):
102
+ super().__init__()
103
+ self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
104
+ self.attn = CausalSelfAttention(config)
105
+ self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
106
+ self.mlp = MLP(config)
107
+
108
+ def forward(self, x):
109
+ x = x + self.attn(self.ln_1(x))
110
+ x = x + self.mlp(self.ln_2(x))
111
+ return x
112
+
113
+ @dataclass
114
+ class GPTConfig:
115
+ block_size: int = 2048
116
+ vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
117
+ n_layer: int = 12
118
+ n_head: int = 12
119
+ n_embd: int = 768
120
+ dropout: float = 0.0
121
+ bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
122
+
123
+ class GPT(nn.Module):
124
+
125
+ def __init__(self, config):
126
+ super().__init__()
127
+ assert config.vocab_size is not None
128
+ assert config.block_size is not None
129
+ self.config = config
130
+
131
+ self.transformer = nn.ModuleDict(dict(
132
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
133
+ wpe = nn.Embedding(config.block_size, config.n_embd),
134
+ drop = nn.Dropout(config.dropout),
135
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
136
+ ln_f = LayerNorm(config.n_embd, bias=config.bias),
137
+ ))
138
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
139
+ # with weight tying when using torch.compile() some warnings get generated:
140
+ # "UserWarning: functional_call was passed multiple values for tied weights.
141
+ # This behavior is deprecated and will be an error in future versions"
142
+ # not 100% sure what this is, so far seems to be harmless. TODO investigate
143
+ self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
144
+
145
+ # init all weights
146
+ self.apply(self._init_weights)
147
+ # apply special scaled init to the residual projections, per GPT-2 paper
148
+ for pn, p in self.named_parameters():
149
+ if pn.endswith('c_proj.weight'):
150
+ torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
151
+
152
+ # report number of parameters
153
+ print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
154
+
155
+ def get_num_params(self, non_embedding=True):
156
+ """
157
+ Return the number of parameters in the model.
158
+ For non-embedding count (default), the position embeddings get subtracted.
159
+ The token embeddings would too, except due to the parameter sharing these
160
+ params are actually used as weights in the final layer, so we include them.
161
+ """
162
+ n_params = sum(p.numel() for p in self.parameters())
163
+ if non_embedding:
164
+ n_params -= self.transformer.wpe.weight.numel()
165
+ return n_params
166
+
167
+ def reset_parameters(self):
168
+ # Initialize weights using Glorot initialization
169
+ for param in self.parameters():
170
+ if param.dim() > 1:
171
+ torch.nn.init.xavier_uniform_(param)
172
+
173
+ def _init_weights(self, module):
174
+ if isinstance(module, nn.Linear):
175
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
176
+ if module.bias is not None:
177
+ torch.nn.init.zeros_(module.bias)
178
+ elif isinstance(module, nn.Embedding):
179
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
180
+
181
+ def forward(self, idx, targets=None):
182
+ device = idx.device
183
+ b, t = idx.size()
184
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
185
+ pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
186
+
187
+ # forward the GPT model itself
188
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
189
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
190
+ x = self.transformer.drop(tok_emb + pos_emb)
191
+ for block in self.transformer.h:
192
+ x = block(x)
193
+ x = self.transformer.ln_f(x)
194
+
195
+ if targets is not None:
196
+ # if we are given some desired targets also calculate the loss
197
+ logits = self.lm_head(x)
198
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
199
+ else:
200
+ # inference-time mini-optimization: only forward the lm_head on the very last position
201
+ logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
202
+ loss = None
203
+
204
+ return logits, loss
205
+
206
+
207
+ @torch.no_grad()
208
+ def generate_streaming(self, idx, max_new_tokens, temperature=1.0, top_k=None):
209
+ """
210
+ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
211
+ the sequence max_new_tokens times, feeding the predictions back into the model each time.
212
+ Yield the generated indices one at a time rather than concatenating them into a single tensor.
213
+ Most likely you'll want to make sure to be in model.eval() mode of operation for this.
214
+ """
215
+ max_idx_length = self.config.block_size
216
+ for _ in range(max_new_tokens):
217
+ # if the sequence context is growing too long we must crop it at block_size
218
+ idx_cond = idx if idx.size(1) <= max_idx_length else idx[:, -max_idx_length:]
219
+ # forward the model to get the logits for the index in the sequence
220
+ logits, _ = self(idx_cond)
221
+ # pluck the logits at the final step and scale by desired temperature
222
+ logits = logits[:, -1, :] / temperature
223
+ # optionally crop the logits to only the top k options
224
+ if top_k is not None:
225
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
226
+ logits[logits < v[:, [-1]]] = -float('Inf')
227
+ # apply softmax to convert logits to (normalized) probabilities
228
+ probs = F.softmax(logits, dim=-1)
229
+ # sample from the distribution
230
+ idx_next = torch.multinomial(probs, num_samples=1)
231
+ # yield the next index
232
+ # append sampled index to the running sequence and continue
233
+ idx = torch.cat((idx, idx_next), dim=1)
234
+ yield idx_next.item()
235
+
236
+
237
+
238
+ def remove_caseifer(text):
239
+ new_text = ""
240
+ i = 0
241
+ while i < len(text):
242
+ if text[i] == "↨":
243
+ if i+1 < len(text):
244
+ new_text += text[i+1].upper()
245
+ i += 1
246
+ else:
247
+ pass # skip this index
248
+ else:
249
+ new_text += text[i]
250
+ i += 1
251
+ return new_text
252
+
253
+ def add_caseifer(text):
254
+
255
+ # Define your set of acceptable characters (original + keys from replace_map + replace_values)
256
+ #chars = "\n\"\t' &@!$#,/\\+=-<>*%.…_:;[]}{()^?0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz§↨©®™¶¥¼°½¾«»£βθ♪ƒ~±¤º·\x8f€¢"
257
+ tokenlist = "\n\t\x8f !#$%&()*+,-./:;<=>?@[\]^_{|}~§↨©®™¶¥¼°½¾«»£βθ♪ƒ±¤º·€¢\"'…0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
258
+
259
+ upperlist = set("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
260
+ new_text = []
261
+ for char in text:
262
+ if char in tokenlist:
263
+ if char in upperlist:
264
+ new_text.append("↨" + char.lower())
265
+ else:
266
+ new_text.append(char)
267
+ else:
268
+ pass
269
+ return "".join(new_text)
270
+
271
+
272
+
273
+ model_dir = '16bit'
274
+ device = 'cuda'
275
+ dtype = 'bfloat16'
276
+ torch.backends.cuda.matmul.allow_tf32 = True
277
+ torch.backends.cudnn.allow_tf32 = True
278
+ device_type = 'cuda' if 'cuda' in device else 'cpu'
279
+ ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
280
+ ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
281
+ max_new_tokens = 2048 # number of tokens generated in each sample
282
+ temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
283
+ top_k = 24 # retain only the top_k most likely tokens, clamp others to have 0 probability
284
+
285
+ ckpt_path = os.path.join(model_dir, 'ckpt.pt')
286
+ checkpoint = torch.load(ckpt_path, map_location=device)
287
+ gptconf = GPTConfig(**checkpoint['model_args'])
288
+ model = GPT(gptconf)
289
+ state_dict = checkpoint['model']
290
+ unwanted_prefix = '_orig_mod.'
291
+ for k,v in list(state_dict.items()):
292
+ if k.startswith(unwanted_prefix):
293
+ state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
294
+ model.load_state_dict(state_dict)
295
+
296
+ model.eval()
297
+ model.to(device)
298
+ meta_path = os.path.join(model_dir, 'meta.pkl')
299
+ load_meta = os.path.exists(meta_path)
300
+ with open(meta_path, 'rb') as f:
301
+ meta = pickle.load(f)
302
+ # TODO want to make this more general to arbitrary encoder/decoder schemes
303
+ stoi, itos = meta['stoi'], meta['itos']
304
+ encode = lambda s: [stoi[c] for c in s]
305
+ decode = lambda l: ''.join([itos[i] for i in l])
306
+
307
+ class CharGPT(llm.Model):
308
+ model_id = "chargpt"
309
+
310
+ def execute(self, prompt, stream, response, conversation):
311
+ text = prompt.prompt
312
+ shift = False
313
+ # generated_text = ''
314
+ start_ids = encode(add_caseifer(text))
315
+ x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
316
+ for idx_next in model.generate_streaming(x, max_new_tokens, temperature=temperature, top_k=top_k):
317
+ # convert the index to a character and print it to the screen
318
+ char = decode([idx_next])
319
+ # check for newline character
320
+ if char == '§':
321
+ # append the completed line to the list or print it to the screen
322
+ # generated_sequences.append(generated_text)
323
+ # reset the generated text for the next line
324
+ # generated_data = generated_text
325
+ # generated_text = ''
326
+ break
327
+
328
+ # append the character to the generated text
329
+ if shift:
330
+ # generated_text += char.upper()
331
+ yield char.upper()# + ''
332
+ # print(char.upper(), end='', flush=True)
333
+ shift = False
334
+ elif char == '↨':
335
+ shift = True
336
+ else:
337
+ # generated_text += char
338
+ yield char# + ''
339
+ #print(char, end='', flush=True)
pyproject.toml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "chargpt"
3
+ version = "0.1"
4
+
5
+ [project.entry-points.llm]
6
+ chargpt = "llm_chargpt"