Corran commited on
Commit
70fd151
·
1 Parent(s): 8d1b757

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/jinaai_jina-embeddings-v2-base-en/",
3
+ "architectures": [
4
+ "JinaBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "attn_implementation": "torch",
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bert.JinaBertConfig",
10
+ "AutoModel": "modeling_bert.JinaBertModel",
11
+ "AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
12
+ "AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
13
+ },
14
+ "classifier_dropout": null,
15
+ "emb_pooler": "mean",
16
+ "feed_forward_type": "geglu",
17
+ "gradient_checkpointing": false,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0.1,
20
+ "hidden_size": 768,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 3072,
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 8192,
25
+ "model_max_length": 8192,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "alibi",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.35.2",
33
+ "type_vocab_size": 2,
34
+ "use_cache": true,
35
+ "vocab_size": 30528
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.31.0",
5
+ "pytorch": "2.0.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
configuration_bert.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ # Copyright (c) 2023 Jina AI GmbH. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ BERT model configuration"""
18
+ from collections import OrderedDict
19
+ from typing import Mapping
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.onnx import OnnxConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class JinaBertConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
32
+ instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the BERT
34
+ [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 30522):
42
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
44
+ hidden_size (`int`, *optional*, defaults to 768):
45
+ Dimensionality of the encoder layers and the pooler layer.
46
+ num_hidden_layers (`int`, *optional*, defaults to 12):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 12):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ intermediate_size (`int`, *optional*, defaults to 3072):
51
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
52
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
53
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
54
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
55
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
56
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
57
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
58
+ The dropout ratio for the attention probabilities.
59
+ max_position_embeddings (`int`, *optional*, defaults to 512):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ type_vocab_size (`int`, *optional*, defaults to 2):
63
+ The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
67
+ The epsilon used by the layer normalization layers.
68
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
69
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
70
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
71
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
72
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
73
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
74
+ is_decoder (`bool`, *optional*, defaults to `False`):
75
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ classifier_dropout (`float`, *optional*):
80
+ The dropout ratio for the classification head.
81
+ feed_forward_type (`str`, *optional*, defaults to `"original"`):
82
+ The type of feed forward layer to use in the bert layers.
83
+ Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
84
+ emb_pooler (`str`, *optional*, defaults to `None`):
85
+ The function to use for pooling the last layer embeddings to get the sentence embeddings.
86
+ Should be one of `None`, `"mean"`.
87
+ attn_implementation (`str`, *optional*, defaults to `"torch"`):
88
+ The implementation of the self-attention layer. Can be one of:
89
+ - `None` for the original implementation,
90
+ - `torch` for the PyTorch SDPA implementation,
91
+
92
+ Examples:
93
+
94
+ ```python
95
+ >>> from transformers import JinaBertConfig, JinaBertModel
96
+
97
+ >>> # Initializing a JinaBert configuration
98
+ >>> configuration = JinaBertConfig()
99
+
100
+ >>> # Initializing a model (with random weights) from the configuration
101
+ >>> model = JinaBertModel(configuration)
102
+
103
+ >>> # Accessing the model configuration
104
+ >>> configuration = model.config
105
+
106
+ >>> # Encode text inputs
107
+ >>> embeddings = model.encode(text_inputs)
108
+ ```"""
109
+ model_type = "bert"
110
+
111
+ def __init__(
112
+ self,
113
+ vocab_size=30522,
114
+ hidden_size=768,
115
+ num_hidden_layers=12,
116
+ num_attention_heads=12,
117
+ intermediate_size=3072,
118
+ hidden_act="gelu",
119
+ hidden_dropout_prob=0.1,
120
+ attention_probs_dropout_prob=0.1,
121
+ max_position_embeddings=512,
122
+ type_vocab_size=2,
123
+ initializer_range=0.02,
124
+ layer_norm_eps=1e-12,
125
+ pad_token_id=0,
126
+ position_embedding_type="absolute",
127
+ use_cache=True,
128
+ classifier_dropout=None,
129
+ feed_forward_type="original",
130
+ emb_pooler=None,
131
+ attn_implementation='torch',
132
+ **kwargs,
133
+ ):
134
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
135
+
136
+ self.vocab_size = vocab_size
137
+ self.hidden_size = hidden_size
138
+ self.num_hidden_layers = num_hidden_layers
139
+ self.num_attention_heads = num_attention_heads
140
+ self.hidden_act = hidden_act
141
+ self.intermediate_size = intermediate_size
142
+ self.hidden_dropout_prob = hidden_dropout_prob
143
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.type_vocab_size = type_vocab_size
146
+ self.initializer_range = initializer_range
147
+ self.layer_norm_eps = layer_norm_eps
148
+ self.position_embedding_type = position_embedding_type
149
+ self.use_cache = use_cache
150
+ self.classifier_dropout = classifier_dropout
151
+ self.feed_forward_type = feed_forward_type
152
+ self.emb_pooler = emb_pooler
153
+ self.attn_implementation = attn_implementation
154
+
155
+ class JinaBertOnnxConfig(OnnxConfig):
156
+ @property
157
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
158
+ if self.task == "multiple-choice":
159
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
160
+ else:
161
+ dynamic_axis = {0: "batch", 1: "sequence"}
162
+ return OrderedDict(
163
+ [
164
+ ("input_ids", dynamic_axis),
165
+ ("attention_mask", dynamic_axis),
166
+ ("token_type_ids", dynamic_axis),
167
+ ]
168
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baaafd8c012d5cf2f5cb1b19461ab49defc4037cba899c75872dec2e36e85003
3
+ size 549493968
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd7aa77b6b2489449205efc6e05e851a20048f7498f88a355e8b113ff4edd9ad
3
+ size 475151
modeling_bert.py ADDED
@@ -0,0 +1,2355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ # Copyright (c) 2023 Jina AI GmbH. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """PyTorch BERT model."""
18
+
19
+
20
+ import math
21
+ import os
22
+ import warnings
23
+ from dataclasses import dataclass
24
+ from typing import List, Optional, Tuple, Union
25
+ import numpy as np
26
+
27
+ import torch
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPastAndCrossAttentions,
35
+ BaseModelOutputWithPoolingAndCrossAttentions,
36
+ CausalLMOutputWithCrossAttentions,
37
+ MaskedLMOutput,
38
+ MultipleChoiceModelOutput,
39
+ NextSentencePredictorOutput,
40
+ QuestionAnsweringModelOutput,
41
+ SequenceClassifierOutput,
42
+ TokenClassifierOutput,
43
+ )
44
+ from transformers.modeling_utils import PreTrainedModel
45
+ from transformers.pytorch_utils import (
46
+ apply_chunking_to_forward,
47
+ find_pruneable_heads_and_indices,
48
+ prune_linear_layer,
49
+ )
50
+ from transformers.utils import (
51
+ ModelOutput,
52
+ add_code_sample_docstrings,
53
+ add_start_docstrings,
54
+ add_start_docstrings_to_model_forward,
55
+ logging,
56
+ replace_return_docstrings,
57
+ )
58
+ from .configuration_bert import JinaBertConfig
59
+
60
+ # Torch implementation
61
+ try:
62
+ from torch.nn.functional import scaled_dot_product_attention
63
+ except ImportError:
64
+ scaled_dot_product_attention = None
65
+
66
+ # This is used by encode but user may not have it installed
67
+ try:
68
+ from tqdm.autonotebook import trange
69
+
70
+ has_tqdm = True
71
+ except ImportError:
72
+ has_tqdm = False
73
+
74
+ logger = logging.get_logger(__name__)
75
+
76
+ _CHECKPOINT_FOR_DOC = "bert-base-uncased"
77
+ _CONFIG_FOR_DOC = "JinaBertConfig"
78
+
79
+ # TokenClassification docstring
80
+ _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = (
81
+ "dbmdz/bert-large-cased-finetuned-conll03-english"
82
+ )
83
+ _TOKEN_CLASS_EXPECTED_OUTPUT = "['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
84
+ _TOKEN_CLASS_EXPECTED_LOSS = 0.01
85
+
86
+ # QuestionAnswering docstring
87
+ _CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
88
+ _QA_EXPECTED_OUTPUT = "'a nice puppet'"
89
+ _QA_EXPECTED_LOSS = 7.41
90
+ _QA_TARGET_START_INDEX = 14
91
+ _QA_TARGET_END_INDEX = 15
92
+
93
+ # SequenceClassification docstring
94
+ _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
95
+ _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
96
+ _SEQ_CLASS_EXPECTED_LOSS = 0.01
97
+
98
+
99
+ def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
100
+ """Load tf checkpoints in a pytorch model."""
101
+ try:
102
+ import re
103
+
104
+ import numpy as np
105
+ import tensorflow as tf
106
+ except ImportError:
107
+ logger.error(
108
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
109
+ "https://www.tensorflow.org/install/ for installation instructions."
110
+ )
111
+ raise
112
+ tf_path = os.path.abspath(tf_checkpoint_path)
113
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
114
+ # Load weights from TF model
115
+ init_vars = tf.train.list_variables(tf_path)
116
+ names = []
117
+ arrays = []
118
+ for name, shape in init_vars:
119
+ logger.info(f"Loading TF weight {name} with shape {shape}")
120
+ array = tf.train.load_variable(tf_path, name)
121
+ names.append(name)
122
+ arrays.append(array)
123
+
124
+ for name, array in zip(names, arrays):
125
+ name = name.split("/")
126
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
127
+ # which are not required for using pretrained model
128
+ if any(
129
+ n
130
+ in [
131
+ "adam_v",
132
+ "adam_m",
133
+ "AdamWeightDecayOptimizer",
134
+ "AdamWeightDecayOptimizer_1",
135
+ "global_step",
136
+ ]
137
+ for n in name
138
+ ):
139
+ logger.info(f"Skipping {'/'.join(name)}")
140
+ continue
141
+ pointer = model
142
+ for m_name in name:
143
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
144
+ scope_names = re.split(r"_(\d+)", m_name)
145
+ else:
146
+ scope_names = [m_name]
147
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
148
+ pointer = getattr(pointer, "weight")
149
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
150
+ pointer = getattr(pointer, "bias")
151
+ elif scope_names[0] == "output_weights":
152
+ pointer = getattr(pointer, "weight")
153
+ elif scope_names[0] == "squad":
154
+ pointer = getattr(pointer, "classifier")
155
+ else:
156
+ try:
157
+ pointer = getattr(pointer, scope_names[0])
158
+ except AttributeError:
159
+ logger.info(f"Skipping {'/'.join(name)}")
160
+ continue
161
+ if len(scope_names) >= 2:
162
+ num = int(scope_names[1])
163
+ pointer = pointer[num]
164
+ if m_name[-11:] == "_embeddings":
165
+ pointer = getattr(pointer, "weight")
166
+ elif m_name == "kernel":
167
+ array = np.transpose(array)
168
+ try:
169
+ if pointer.shape != array.shape:
170
+ raise ValueError(
171
+ f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
172
+ )
173
+ except ValueError as e:
174
+ e.args += (pointer.shape, array.shape)
175
+ raise
176
+ logger.info(f"Initialize PyTorch weight {name}")
177
+ pointer.data = torch.from_numpy(array)
178
+ return model
179
+
180
+
181
+ class JinaBertEmbeddings(nn.Module):
182
+ """Construct the embeddings from word, position and token_type embeddings."""
183
+
184
+ def __init__(self, config: JinaBertConfig):
185
+ super().__init__()
186
+ self.word_embeddings = nn.Embedding(
187
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
188
+ )
189
+ if config.position_embedding_type != "alibi":
190
+ self.position_embeddings = nn.Embedding(
191
+ config.max_position_embeddings, config.hidden_size
192
+ )
193
+ self.token_type_embeddings = nn.Embedding(
194
+ config.type_vocab_size, config.hidden_size
195
+ )
196
+
197
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
198
+ # any TensorFlow checkpoint file
199
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
200
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
201
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
202
+ self.position_embedding_type = getattr(
203
+ config, "position_embedding_type", "absolute"
204
+ )
205
+ self.register_buffer(
206
+ "position_ids",
207
+ torch.arange(config.max_position_embeddings).expand((1, -1)),
208
+ persistent=False,
209
+ )
210
+ self.register_buffer(
211
+ "token_type_ids",
212
+ torch.zeros(self.position_ids.size(), dtype=torch.long),
213
+ persistent=False,
214
+ )
215
+
216
+ def forward(
217
+ self,
218
+ input_ids: Optional[torch.LongTensor] = None,
219
+ token_type_ids: Optional[torch.LongTensor] = None,
220
+ position_ids: Optional[torch.LongTensor] = None,
221
+ inputs_embeds: Optional[torch.FloatTensor] = None,
222
+ past_key_values_length: int = 0,
223
+ ) -> torch.Tensor:
224
+ if input_ids is not None:
225
+ input_shape = input_ids.size()
226
+ else:
227
+ input_shape = inputs_embeds.size()[:-1]
228
+
229
+ seq_length = input_shape[1]
230
+
231
+ if position_ids is None:
232
+ position_ids = self.position_ids[
233
+ :, past_key_values_length : seq_length + past_key_values_length
234
+ ]
235
+
236
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
237
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
238
+ # issue #5664
239
+ if token_type_ids is None:
240
+ if hasattr(self, "token_type_ids"):
241
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
242
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
243
+ input_shape[0], seq_length
244
+ )
245
+ token_type_ids = buffered_token_type_ids_expanded
246
+ else:
247
+ token_type_ids = torch.zeros(
248
+ input_shape, dtype=torch.long, device=self.position_ids.device
249
+ )
250
+
251
+ if inputs_embeds is None:
252
+ inputs_embeds = self.word_embeddings(input_ids)
253
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
254
+
255
+ embeddings = inputs_embeds + token_type_embeddings
256
+ if self.position_embedding_type == "absolute":
257
+ position_embeddings = self.position_embeddings(position_ids)
258
+ embeddings += position_embeddings
259
+ embeddings = self.LayerNorm(embeddings)
260
+ embeddings = self.dropout(embeddings)
261
+ return embeddings
262
+
263
+
264
+ class JinaBertSelfAttention(nn.Module):
265
+ def __init__(self, config: JinaBertConfig, position_embedding_type=None):
266
+ super().__init__()
267
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
268
+ config, "embedding_size"
269
+ ):
270
+ raise ValueError(
271
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
272
+ f"heads ({config.num_attention_heads})"
273
+ )
274
+
275
+ self.attn_implementation = config.attn_implementation
276
+ self.num_attention_heads = config.num_attention_heads
277
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
278
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
279
+
280
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
281
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
282
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
283
+
284
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
285
+ self.position_embedding_type = position_embedding_type or getattr(
286
+ config, "position_embedding_type", "absolute"
287
+ )
288
+ if (
289
+ self.position_embedding_type == "relative_key"
290
+ or self.position_embedding_type == "relative_key_query"
291
+ ):
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.distance_embedding = nn.Embedding(
294
+ 2 * config.max_position_embeddings - 1, self.attention_head_size
295
+ )
296
+
297
+ self.is_decoder = config.is_decoder
298
+
299
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
300
+ new_x_shape = x.size()[:-1] + (
301
+ self.num_attention_heads,
302
+ self.attention_head_size,
303
+ )
304
+ x = x.view(new_x_shape)
305
+ return x.permute(0, 2, 1, 3)
306
+
307
+ def forward(
308
+ self,
309
+ hidden_states: torch.Tensor,
310
+ attention_mask: Optional[torch.FloatTensor] = None,
311
+ head_mask: Optional[torch.FloatTensor] = None,
312
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
313
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
314
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
315
+ output_attentions: Optional[bool] = False,
316
+ bias: Optional[torch.FloatTensor] = None,
317
+ ) -> Tuple[torch.Tensor]:
318
+ mixed_query_layer = self.query(hidden_states)
319
+
320
+ # If this is instantiated as a cross-attention module, the keys
321
+ # and values come from an encoder; the attention mask needs to be
322
+ # such that the encoder's padding tokens are not attended to.
323
+ is_cross_attention = encoder_hidden_states is not None
324
+
325
+ if is_cross_attention and past_key_value is not None:
326
+ # reuse k,v, cross_attentions
327
+ key_layer = past_key_value[0]
328
+ value_layer = past_key_value[1]
329
+ attention_mask = encoder_attention_mask
330
+ elif is_cross_attention:
331
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
332
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
333
+ attention_mask = encoder_attention_mask
334
+ elif past_key_value is not None:
335
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
336
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
337
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
338
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
339
+ else:
340
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
341
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
342
+
343
+ query_layer = self.transpose_for_scores(mixed_query_layer)
344
+
345
+ use_cache = past_key_value is not None
346
+ if self.is_decoder:
347
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
348
+ # Further calls to cross_attention layer can then reuse all cross-attention
349
+ # key/value_states (first "if" case)
350
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
351
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
352
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
353
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
354
+ past_key_value = (key_layer, value_layer)
355
+
356
+ if self.attn_implementation == 'torch' and scaled_dot_product_attention is not None:
357
+ b, _, s, _ = query_layer.shape
358
+ new_bias = attention_mask + bias
359
+ attn = scaled_dot_product_attention(query_layer, key_layer, value_layer, new_bias)
360
+ attn = attn.permute(0, 2, 1, 3).contiguous()
361
+ return (attn.view(b, s, self.all_head_size),)
362
+
363
+ # Take the dot product between "query" and "key" to get the raw attention scores.
364
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
365
+
366
+ if (
367
+ self.position_embedding_type == "relative_key"
368
+ or self.position_embedding_type == "relative_key_query"
369
+ ):
370
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
371
+ if use_cache:
372
+ position_ids_l = torch.tensor(
373
+ key_length - 1, dtype=torch.long, device=hidden_states.device
374
+ ).view(-1, 1)
375
+ else:
376
+ position_ids_l = torch.arange(
377
+ query_length, dtype=torch.long, device=hidden_states.device
378
+ ).view(-1, 1)
379
+ position_ids_r = torch.arange(
380
+ key_length, dtype=torch.long, device=hidden_states.device
381
+ ).view(1, -1)
382
+ distance = position_ids_l - position_ids_r
383
+
384
+ positional_embedding = self.distance_embedding(
385
+ distance + self.max_position_embeddings - 1
386
+ )
387
+ positional_embedding = positional_embedding.to(
388
+ dtype=query_layer.dtype
389
+ ) # fp16 compatibility
390
+
391
+ if self.position_embedding_type == "relative_key":
392
+ relative_position_scores = torch.einsum(
393
+ "bhld,lrd->bhlr", query_layer, positional_embedding
394
+ )
395
+ attention_scores = attention_scores + relative_position_scores
396
+ elif self.position_embedding_type == "relative_key_query":
397
+ relative_position_scores_query = torch.einsum(
398
+ "bhld,lrd->bhlr", query_layer, positional_embedding
399
+ )
400
+ relative_position_scores_key = torch.einsum(
401
+ "bhrd,lrd->bhlr", key_layer, positional_embedding
402
+ )
403
+ attention_scores = (
404
+ attention_scores
405
+ + relative_position_scores_query
406
+ + relative_position_scores_key
407
+ )
408
+
409
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
410
+ if attention_mask is not None:
411
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
412
+ attention_scores = attention_scores + attention_mask
413
+
414
+ # Normalize the attention scores to probabilities.
415
+ attention_probs = nn.functional.softmax(attention_scores + bias, dim=-1)
416
+
417
+ # This is actually dropping out entire tokens to attend to, which might
418
+ # seem a bit unusual, but is taken from the original Transformer paper.
419
+ attention_probs = self.dropout(attention_probs)
420
+
421
+ # Mask heads if we want to
422
+ if head_mask is not None:
423
+ attention_probs = attention_probs * head_mask
424
+
425
+ context_layer = torch.matmul(attention_probs, value_layer)
426
+
427
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
428
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
429
+ context_layer = context_layer.view(new_context_layer_shape)
430
+
431
+ outputs = (
432
+ (context_layer, attention_probs) if output_attentions else (context_layer,)
433
+ )
434
+
435
+ if self.is_decoder:
436
+ outputs = outputs + (past_key_value,)
437
+ return outputs
438
+
439
+
440
+ class JinaBertSelfOutput(nn.Module):
441
+ def __init__(self, config):
442
+ super().__init__()
443
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
444
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
445
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
446
+
447
+ def forward(
448
+ self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
449
+ ) -> torch.Tensor:
450
+ hidden_states = self.dense(hidden_states)
451
+ hidden_states = self.dropout(hidden_states)
452
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
453
+ return hidden_states
454
+
455
+
456
+ class JinaBertAttention(nn.Module):
457
+ def __init__(self, config, position_embedding_type=None):
458
+ super().__init__()
459
+ self.self = JinaBertSelfAttention(
460
+ config, position_embedding_type=position_embedding_type
461
+ )
462
+ self.output = JinaBertSelfOutput(config)
463
+ self.pruned_heads = set()
464
+
465
+ def prune_heads(self, heads):
466
+ if len(heads) == 0:
467
+ return
468
+ heads, index = find_pruneable_heads_and_indices(
469
+ heads,
470
+ self.self.num_attention_heads,
471
+ self.self.attention_head_size,
472
+ self.pruned_heads,
473
+ )
474
+
475
+ # Prune linear layers
476
+ self.self.query = prune_linear_layer(self.self.query, index)
477
+ self.self.key = prune_linear_layer(self.self.key, index)
478
+ self.self.value = prune_linear_layer(self.self.value, index)
479
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
480
+
481
+ # Update hyper params and store pruned heads
482
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
483
+ self.self.all_head_size = (
484
+ self.self.attention_head_size * self.self.num_attention_heads
485
+ )
486
+ self.pruned_heads = self.pruned_heads.union(heads)
487
+
488
+ def forward(
489
+ self,
490
+ hidden_states: torch.Tensor,
491
+ attention_mask: Optional[torch.FloatTensor] = None,
492
+ head_mask: Optional[torch.FloatTensor] = None,
493
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
494
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
495
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
496
+ output_attentions: Optional[bool] = False,
497
+ bias: Optional[torch.FloatTensor] = None,
498
+ ) -> Tuple[torch.Tensor]:
499
+ self_outputs = self.self(
500
+ hidden_states,
501
+ attention_mask,
502
+ head_mask,
503
+ encoder_hidden_states,
504
+ encoder_attention_mask,
505
+ past_key_value,
506
+ output_attentions,
507
+ bias,
508
+ )
509
+ attention_output = self.output(self_outputs[0], hidden_states)
510
+ outputs = (attention_output,) + self_outputs[
511
+ 1:
512
+ ] # add attentions if we output them
513
+ return outputs
514
+
515
+
516
+ class JinaBertIntermediate(nn.Module):
517
+ def __init__(self, config):
518
+ super().__init__()
519
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
520
+ if isinstance(config.hidden_act, str):
521
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
522
+ else:
523
+ self.intermediate_act_fn = config.hidden_act
524
+
525
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
526
+ hidden_states = self.dense(hidden_states)
527
+ hidden_states = self.intermediate_act_fn(hidden_states)
528
+ return hidden_states
529
+
530
+
531
+ class JinaBertOutput(nn.Module):
532
+ def __init__(self, config: JinaBertConfig):
533
+ super().__init__()
534
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
535
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
536
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
537
+
538
+ def forward(
539
+ self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
540
+ ) -> torch.Tensor:
541
+ hidden_states = self.dense(hidden_states)
542
+ hidden_states = self.dropout(hidden_states)
543
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
544
+ return hidden_states
545
+
546
+
547
+ class JinaBertGLUMLP(nn.Module):
548
+ def __init__(self, config: JinaBertConfig):
549
+ super().__init__()
550
+ self.config = config
551
+ self.gated_layers = nn.Linear(
552
+ config.hidden_size, config.intermediate_size * 2, bias=False
553
+ )
554
+ if config.feed_forward_type == 'reglu':
555
+ self.act = nn.ReLU()
556
+ elif config.feed_forward_type == 'geglu':
557
+ self.act = nn.GELU()
558
+ else:
559
+ raise ValueError(
560
+ f"feed_forward_type {config.feed_forward_type} not supported"
561
+ )
562
+ self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
563
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
564
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
565
+
566
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
567
+ residual_connection = hidden_states
568
+ # compute the activation
569
+ hidden_states = self.gated_layers(hidden_states)
570
+ gated = hidden_states[:, :, : self.config.intermediate_size]
571
+ non_gated = hidden_states[:, :, self.config.intermediate_size :]
572
+ hidden_states = self.act(gated) * non_gated
573
+ hidden_states = self.dropout(hidden_states)
574
+ # multiply by the second matrix
575
+ hidden_states = self.wo(hidden_states)
576
+ # add the residual connection and post-LN
577
+ hidden_states = self.layernorm(hidden_states + residual_connection)
578
+ return hidden_states
579
+
580
+
581
+ class JinaBertLayer(nn.Module):
582
+ def __init__(self, config: JinaBertConfig):
583
+ super().__init__()
584
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
585
+ self.seq_len_dim = 1
586
+ self.attention = JinaBertAttention(config)
587
+ self.is_decoder = config.is_decoder
588
+ self.add_cross_attention = config.add_cross_attention
589
+ self.feed_forward_type = config.feed_forward_type
590
+ if self.add_cross_attention:
591
+ if not self.is_decoder:
592
+ raise ValueError(
593
+ f"{self} should be used as a decoder model if cross attention is added"
594
+ )
595
+ self.crossattention = JinaBertAttention(
596
+ config, position_embedding_type="absolute"
597
+ )
598
+ if self.feed_forward_type.endswith('glu'):
599
+ self.mlp = JinaBertGLUMLP(config)
600
+ else:
601
+ self.intermediate = JinaBertIntermediate(config)
602
+ self.output = JinaBertOutput(config)
603
+
604
+ def forward(
605
+ self,
606
+ hidden_states: torch.Tensor,
607
+ attention_mask: Optional[torch.FloatTensor] = None,
608
+ head_mask: Optional[torch.FloatTensor] = None,
609
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
610
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
611
+ bias: Optional[torch.FloatTensor] = None,
612
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
613
+ output_attentions: Optional[bool] = False,
614
+ ) -> Tuple[torch.Tensor]:
615
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
616
+ self_attn_past_key_value = (
617
+ past_key_value[:2] if past_key_value is not None else None
618
+ )
619
+ self_attention_outputs = self.attention(
620
+ hidden_states,
621
+ attention_mask,
622
+ head_mask,
623
+ output_attentions=output_attentions,
624
+ past_key_value=self_attn_past_key_value,
625
+ bias=bias,
626
+ )
627
+ attention_output = self_attention_outputs[0]
628
+
629
+ # if decoder, the last output is tuple of self-attn cache
630
+ if self.is_decoder:
631
+ outputs = self_attention_outputs[1:-1]
632
+ present_key_value = self_attention_outputs[-1]
633
+ else:
634
+ outputs = self_attention_outputs[
635
+ 1:
636
+ ] # add self attentions if we output attention weights
637
+
638
+ cross_attn_present_key_value = None
639
+ if self.is_decoder and encoder_hidden_states is not None:
640
+ if not hasattr(self, "crossattention"):
641
+ raise ValueError(
642
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
643
+ " by setting `config.add_cross_attention=True`"
644
+ )
645
+
646
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
647
+ cross_attn_past_key_value = (
648
+ past_key_value[-2:] if past_key_value is not None else None
649
+ )
650
+ cross_attention_outputs = self.crossattention(
651
+ attention_output,
652
+ attention_mask,
653
+ head_mask,
654
+ encoder_hidden_states,
655
+ encoder_attention_mask,
656
+ cross_attn_past_key_value,
657
+ output_attentions,
658
+ )
659
+ attention_output = cross_attention_outputs[0]
660
+ outputs = (
661
+ outputs + cross_attention_outputs[1:-1]
662
+ ) # add cross attentions if we output attention weights
663
+
664
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
665
+ cross_attn_present_key_value = cross_attention_outputs[-1]
666
+ present_key_value = present_key_value + cross_attn_present_key_value
667
+
668
+ if self.feed_forward_type.endswith('glu'):
669
+ layer_output = self.mlp(attention_output)
670
+ else:
671
+ layer_output = apply_chunking_to_forward(
672
+ self.feed_forward_chunk,
673
+ self.chunk_size_feed_forward,
674
+ self.seq_len_dim,
675
+ attention_output,
676
+ )
677
+ outputs = (layer_output,) + outputs
678
+
679
+ # if decoder, return the attn key/values as the last output
680
+ if self.is_decoder:
681
+ outputs = outputs + (present_key_value,)
682
+
683
+ return outputs
684
+
685
+ def feed_forward_chunk(self, attention_output):
686
+ intermediate_output = self.intermediate(attention_output)
687
+ layer_output = self.output(intermediate_output, attention_output)
688
+ return layer_output
689
+
690
+
691
+ class JinaBertEncoder(nn.Module):
692
+ def __init__(self, config: JinaBertConfig):
693
+ super().__init__()
694
+ self.config = config
695
+ self.layer = nn.ModuleList(
696
+ [JinaBertLayer(config) for _ in range(config.num_hidden_layers)]
697
+ )
698
+ self.gradient_checkpointing = False
699
+ self.num_attention_heads = config.num_attention_heads
700
+ self.register_buffer(
701
+ "alibi",
702
+ self.rebuild_alibi_tensor(size=config.max_position_embeddings),
703
+ persistent=False,
704
+ )
705
+
706
+ def rebuild_alibi_tensor(
707
+ self, size: int, device: Optional[Union[torch.device, str]] = None
708
+ ):
709
+ # Alibi
710
+ # Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
711
+ # In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
712
+ # of the logits, which makes the math work out *after* applying causal masking. If no causal masking
713
+ # will be applied, it is necessary to construct the diagonal mask.
714
+ n_heads = self.num_attention_heads
715
+
716
+ def _get_alibi_head_slopes(n_heads: int) -> List[float]:
717
+ def get_slopes_power_of_2(n):
718
+ start = 2 ** (-(2 ** -(math.log2(n) - 3)))
719
+ ratio = start
720
+ return [start * ratio**i for i in range(n)]
721
+
722
+ if math.log2(n_heads).is_integer():
723
+ return get_slopes_power_of_2(
724
+ n_heads
725
+ ) # In the paper, we only train models that have 2^a heads for some a. This function has
726
+ else: # some good properties that only occur when the input is a power of 2. To maintain that even
727
+ closest_power_of_2 = 2 ** math.floor(
728
+ math.log2(n_heads)
729
+ ) # when the number of heads is not a power of 2, we use this workaround.
730
+ return (
731
+ get_slopes_power_of_2(closest_power_of_2)
732
+ + _get_alibi_head_slopes(2 * closest_power_of_2)[0::2][
733
+ : n_heads - closest_power_of_2
734
+ ]
735
+ )
736
+
737
+ context_position = torch.arange(size, device=device)[:, None]
738
+ memory_position = torch.arange(size, device=device)[None, :]
739
+ relative_position = torch.abs(memory_position - context_position)
740
+ # [n_heads, max_token_length, max_token_length]
741
+ relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
742
+ slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device) * -1
743
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
744
+ # [1, n_heads, max_token_length, max_token_length]
745
+ alibi = alibi.unsqueeze(0)
746
+ assert alibi.shape == torch.Size([1, n_heads, size, size])
747
+
748
+ self._current_alibi_size = size
749
+ return alibi
750
+
751
+ def forward(
752
+ self,
753
+ hidden_states: torch.Tensor,
754
+ attention_mask: Optional[torch.FloatTensor] = None,
755
+ head_mask: Optional[torch.FloatTensor] = None,
756
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
757
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
758
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
759
+ use_cache: Optional[bool] = None,
760
+ output_attentions: Optional[bool] = False,
761
+ output_hidden_states: Optional[bool] = False,
762
+ return_dict: Optional[bool] = True,
763
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
764
+ all_hidden_states = () if output_hidden_states else None
765
+ all_self_attentions = () if output_attentions else None
766
+ all_cross_attentions = (
767
+ () if output_attentions and self.config.add_cross_attention else None
768
+ )
769
+
770
+ # Add alibi matrix to extended_attention_mask
771
+ _, seqlen, _ = hidden_states.size()
772
+ if self._current_alibi_size < seqlen:
773
+ # Rebuild the alibi tensor when needed
774
+ warnings.warn(
775
+ f'Increasing alibi size from {self._current_alibi_size} to {seqlen}.'
776
+ )
777
+ self.register_buffer(
778
+ "alibi",
779
+ self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device).to(
780
+ hidden_states.dtype
781
+ ),
782
+ persistent=False,
783
+ )
784
+ elif self.alibi.device != hidden_states.device:
785
+ # Device catch-up
786
+ self.alibi = self.alibi.to(hidden_states.device)
787
+
788
+ alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
789
+ if self.gradient_checkpointing and self.training:
790
+ if use_cache:
791
+ logger.warning_once(
792
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
793
+ )
794
+ use_cache = False
795
+
796
+ next_decoder_cache = () if use_cache else None
797
+ for i, layer_module in enumerate(self.layer):
798
+ if output_hidden_states:
799
+ all_hidden_states = all_hidden_states + (hidden_states,)
800
+
801
+ layer_head_mask = head_mask[i] if head_mask is not None else None
802
+ past_key_value = past_key_values[i] if past_key_values is not None else None
803
+
804
+ if self.gradient_checkpointing and self.training:
805
+
806
+ def create_custom_forward(module):
807
+ def custom_forward(*inputs):
808
+ return module(*inputs, past_key_value, output_attentions)
809
+
810
+ return custom_forward
811
+
812
+ layer_outputs = torch.utils.checkpoint.checkpoint(
813
+ create_custom_forward(layer_module),
814
+ hidden_states,
815
+ attention_mask,
816
+ layer_head_mask,
817
+ encoder_hidden_states,
818
+ encoder_attention_mask,
819
+ alibi_bias,
820
+ )
821
+ else:
822
+ layer_outputs = layer_module(
823
+ hidden_states,
824
+ attention_mask,
825
+ layer_head_mask,
826
+ encoder_hidden_states,
827
+ encoder_attention_mask,
828
+ alibi_bias,
829
+ past_key_value,
830
+ output_attentions,
831
+ )
832
+
833
+ hidden_states = layer_outputs[0]
834
+ if use_cache:
835
+ next_decoder_cache += (layer_outputs[-1],)
836
+ if output_attentions:
837
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
838
+ if self.config.add_cross_attention:
839
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
840
+
841
+ if output_hidden_states:
842
+ all_hidden_states = all_hidden_states + (hidden_states,)
843
+
844
+ if not return_dict:
845
+ return tuple(
846
+ v
847
+ for v in [
848
+ hidden_states,
849
+ next_decoder_cache,
850
+ all_hidden_states,
851
+ all_self_attentions,
852
+ all_cross_attentions,
853
+ ]
854
+ if v is not None
855
+ )
856
+ return BaseModelOutputWithPastAndCrossAttentions(
857
+ last_hidden_state=hidden_states,
858
+ past_key_values=next_decoder_cache,
859
+ hidden_states=all_hidden_states,
860
+ attentions=all_self_attentions,
861
+ cross_attentions=all_cross_attentions,
862
+ )
863
+
864
+
865
+ class JinaBertPooler(nn.Module):
866
+ def __init__(self, config):
867
+ super().__init__()
868
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
869
+ self.activation = nn.Tanh()
870
+
871
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
872
+ # We "pool" the model by simply taking the hidden state corresponding
873
+ # to the first token.
874
+ first_token_tensor = hidden_states[:, 0]
875
+ pooled_output = self.dense(first_token_tensor)
876
+ pooled_output = self.activation(pooled_output)
877
+ return pooled_output
878
+
879
+
880
+ class JinaBertPredictionHeadTransform(nn.Module):
881
+ def __init__(self, config):
882
+ super().__init__()
883
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
884
+ if isinstance(config.hidden_act, str):
885
+ self.transform_act_fn = ACT2FN[config.hidden_act]
886
+ else:
887
+ self.transform_act_fn = config.hidden_act
888
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
889
+
890
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
891
+ hidden_states = self.dense(hidden_states)
892
+ hidden_states = self.transform_act_fn(hidden_states)
893
+ hidden_states = self.LayerNorm(hidden_states)
894
+ return hidden_states
895
+
896
+
897
+ class JinaBertLMPredictionHead(nn.Module):
898
+ def __init__(self, config):
899
+ super().__init__()
900
+ self.transform = JinaBertPredictionHeadTransform(config)
901
+
902
+ # The output weights are the same as the input embeddings, but there is
903
+ # an output-only bias for each token.
904
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
905
+
906
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
907
+
908
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
909
+ self.decoder.bias = self.bias
910
+
911
+ def forward(self, hidden_states):
912
+ hidden_states = self.transform(hidden_states)
913
+ hidden_states = self.decoder(hidden_states)
914
+ return hidden_states
915
+
916
+
917
+ class JinaBertOnlyMLMHead(nn.Module):
918
+ def __init__(self, config):
919
+ super().__init__()
920
+ self.predictions = JinaBertLMPredictionHead(config)
921
+
922
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
923
+ prediction_scores = self.predictions(sequence_output)
924
+ return prediction_scores
925
+
926
+
927
+ class JinaBertOnlyNSPHead(nn.Module):
928
+ def __init__(self, config):
929
+ super().__init__()
930
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
931
+
932
+ def forward(self, pooled_output):
933
+ seq_relationship_score = self.seq_relationship(pooled_output)
934
+ return seq_relationship_score
935
+
936
+
937
+ class JinaBertPreTrainingHeads(nn.Module):
938
+ def __init__(self, config):
939
+ super().__init__()
940
+ self.predictions = JinaBertLMPredictionHead(config)
941
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
942
+
943
+ def forward(self, sequence_output, pooled_output):
944
+ prediction_scores = self.predictions(sequence_output)
945
+ seq_relationship_score = self.seq_relationship(pooled_output)
946
+ return prediction_scores, seq_relationship_score
947
+
948
+
949
+ class JinaBertPreTrainedModel(PreTrainedModel):
950
+ """
951
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
952
+ models.
953
+ """
954
+
955
+ config_class = JinaBertConfig
956
+ load_tf_weights = load_tf_weights_in_bert
957
+ base_model_prefix = "bert"
958
+ supports_gradient_checkpointing = True
959
+ _no_split_modules = ["JinaBertLayer"]
960
+
961
+ def _init_weights(self, module):
962
+ """Initialize the weights"""
963
+ if isinstance(module, nn.Linear):
964
+ # Slightly different from the TF version which uses truncated_normal for initialization
965
+ # cf https://github.com/pytorch/pytorch/pull/5617
966
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
967
+ if module.bias is not None:
968
+ module.bias.data.zero_()
969
+ elif isinstance(module, nn.Embedding):
970
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
971
+ if module.padding_idx is not None:
972
+ module.weight.data[module.padding_idx].zero_()
973
+ elif isinstance(module, nn.LayerNorm):
974
+ module.bias.data.zero_()
975
+ module.weight.data.fill_(1.0)
976
+
977
+ def _set_gradient_checkpointing(self, module, value=False):
978
+ if isinstance(module, JinaBertEncoder):
979
+ module.gradient_checkpointing = value
980
+
981
+
982
+ @dataclass
983
+ class JinaBertForPreTrainingOutput(ModelOutput):
984
+ """
985
+ Output type of [`BertForPreTraining`].
986
+
987
+ Args:
988
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
989
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
990
+ (classification) loss.
991
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
992
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
993
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
994
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
995
+ before SoftMax).
996
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
997
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
998
+ shape `(batch_size, sequence_length, hidden_size)`.
999
+
1000
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1001
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
1002
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
1003
+ sequence_length)`.
1004
+
1005
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
1006
+ heads.
1007
+ """
1008
+
1009
+ loss: Optional[torch.FloatTensor] = None
1010
+ prediction_logits: torch.FloatTensor = None
1011
+ seq_relationship_logits: torch.FloatTensor = None
1012
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
1013
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
1014
+
1015
+
1016
+ BERT_START_DOCSTRING = r"""
1017
+
1018
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1019
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1020
+ etc.)
1021
+
1022
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1023
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1024
+ and behavior.
1025
+
1026
+ Parameters:
1027
+ config ([`BertConfig`]): Model configuration class with all the parameters of the model.
1028
+ Initializing with a config file does not load the weights associated with the model, only the
1029
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1030
+ """
1031
+
1032
+ BERT_INPUTS_DOCSTRING = r"""
1033
+ Args:
1034
+ input_ids (`torch.LongTensor` of shape `({0})`):
1035
+ Indices of input sequence tokens in the vocabulary.
1036
+
1037
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1038
+ [`PreTrainedTokenizer.__call__`] for details.
1039
+
1040
+ [What are input IDs?](../glossary#input-ids)
1041
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
1042
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1043
+
1044
+ - 1 for tokens that are **not masked**,
1045
+ - 0 for tokens that are **masked**.
1046
+
1047
+ [What are attention masks?](../glossary#attention-mask)
1048
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1049
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1050
+ 1]`:
1051
+
1052
+ - 0 corresponds to a *sentence A* token,
1053
+ - 1 corresponds to a *sentence B* token.
1054
+
1055
+ [What are token type IDs?](../glossary#token-type-ids)
1056
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1057
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1058
+ config.max_position_embeddings - 1]`.
1059
+
1060
+ [What are position IDs?](../glossary#position-ids)
1061
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
1062
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
1063
+
1064
+ - 1 indicates the head is **not masked**,
1065
+ - 0 indicates the head is **masked**.
1066
+
1067
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
1068
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1069
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1070
+ model's internal embedding lookup matrix.
1071
+ output_attentions (`bool`, *optional*):
1072
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1073
+ tensors for more detail.
1074
+ output_hidden_states (`bool`, *optional*):
1075
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1076
+ more detail.
1077
+ return_dict (`bool`, *optional*):
1078
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1079
+ """
1080
+
1081
+
1082
+ @add_start_docstrings(
1083
+ "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
1084
+ BERT_START_DOCSTRING,
1085
+ )
1086
+ class JinaBertModel(JinaBertPreTrainedModel):
1087
+ """
1088
+
1089
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1090
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
1091
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1092
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1093
+
1094
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1095
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1096
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1097
+ """
1098
+
1099
+ def __init__(self, config: JinaBertConfig, add_pooling_layer=True):
1100
+ super().__init__(config)
1101
+ self.config = config
1102
+
1103
+ self.emb_pooler = config.emb_pooler
1104
+ self._name_or_path = config._name_or_path
1105
+ if self.emb_pooler:
1106
+ from transformers import AutoTokenizer
1107
+
1108
+ self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
1109
+
1110
+ self.embeddings = JinaBertEmbeddings(config)
1111
+ self.encoder = JinaBertEncoder(config)
1112
+
1113
+ self.pooler = JinaBertPooler(config) if add_pooling_layer else None
1114
+
1115
+ # Initialize weights and apply final processing
1116
+ self.post_init()
1117
+
1118
+ @torch.inference_mode()
1119
+ def encode(
1120
+ self: 'JinaBertModel',
1121
+ sentences: Union[str, List[str]],
1122
+ batch_size: int = 32,
1123
+ show_progress_bar: Optional[bool] = None,
1124
+ output_value: str = 'sentence_embedding',
1125
+ convert_to_numpy: bool = True,
1126
+ convert_to_tensor: bool = False,
1127
+ device: Optional[torch.device] = None,
1128
+ normalize_embeddings: bool = False,
1129
+ **tokenizer_kwargs,
1130
+ ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
1131
+ """
1132
+ Computes sentence embeddings
1133
+
1134
+ Args:
1135
+ sentences(`str` or `List[str]`):
1136
+ Sentence or sentences to be encoded
1137
+ batch_size(`int`, *optional*, defaults to 32):
1138
+ Batch size for the computation
1139
+ show_progress_bar(`bool`, *optional*, defaults to None):
1140
+ Show a progress bar when encoding sentences.
1141
+ If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
1142
+ output_value(`str`, *optional*, defaults to 'sentence_embedding'):
1143
+ Default sentence_embedding, to get sentence embeddings.
1144
+ Can be set to token_embeddings to get wordpiece token embeddings.
1145
+ Set to None, to get all output values
1146
+ convert_to_numpy(`bool`, *optional*, defaults to True):
1147
+ If true, the output is a list of numpy vectors.
1148
+ Else, it is a list of pytorch tensors.
1149
+ convert_to_tensor(`bool`, *optional*, defaults to False):
1150
+ If true, you get one large tensor as return.
1151
+ Overwrites any setting from convert_to_numpy
1152
+ device(`torch.device`, *optional*, defaults to None):
1153
+ Which torch.device to use for the computation
1154
+ normalize_embeddings(`bool`, *optional*, defaults to False):
1155
+ If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
1156
+ tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
1157
+ Keyword arguments for the tokenizer
1158
+
1159
+ Returns:
1160
+ By default, a list of tensors is returned.
1161
+ If convert_to_tensor, a stacked tensor is returned.
1162
+ If convert_to_numpy, a numpy matrix is returned.
1163
+ """
1164
+ if not self.emb_pooler:
1165
+ warnings.warn("No emb_pooler specified, defaulting to mean pooling.")
1166
+ self.emb_pooler = 'mean'
1167
+ from transformers import AutoTokenizer
1168
+
1169
+ self.tokenizer = AutoTokenizer.from_pretrained(self._name_or_path)
1170
+ is_training = self.training
1171
+ self.eval()
1172
+
1173
+ if show_progress_bar is None:
1174
+ show_progress_bar = (
1175
+ logger.getEffectiveLevel() == logging.INFO
1176
+ or logger.getEffectiveLevel() == logging.DEBUG
1177
+ )
1178
+
1179
+ if convert_to_tensor:
1180
+ convert_to_numpy = False
1181
+
1182
+ if output_value != 'sentence_embedding':
1183
+ convert_to_tensor = False
1184
+ convert_to_numpy = False
1185
+
1186
+ input_was_string = False
1187
+ if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
1188
+ sentences = [sentences]
1189
+ input_was_string = True
1190
+
1191
+ if device is not None:
1192
+ self.to(device)
1193
+
1194
+ # TODO: Maybe use better length heuristic?
1195
+ permutation = np.argsort([-len(i) for i in sentences])
1196
+ inverse_permutation = np.argsort(permutation)
1197
+ sentences = [sentences[idx] for idx in permutation]
1198
+
1199
+ tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
1200
+ tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 8192)
1201
+ tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
1202
+
1203
+ all_embeddings = []
1204
+
1205
+ if has_tqdm:
1206
+ range_iter = trange(
1207
+ 0,
1208
+ len(sentences),
1209
+ batch_size,
1210
+ desc="Encoding",
1211
+ disable=not show_progress_bar,
1212
+ )
1213
+ else:
1214
+ range_iter = range(0, len(sentences), batch_size)
1215
+
1216
+ for i in range_iter:
1217
+ encoded_input = self.tokenizer(
1218
+ sentences[i : i + batch_size],
1219
+ return_tensors='pt',
1220
+ **tokenizer_kwargs,
1221
+ ).to(self.device)
1222
+ token_embs = self.forward(**encoded_input)[0]
1223
+
1224
+ # Accumulate in fp32 to avoid overflow
1225
+ token_embs = token_embs.float()
1226
+
1227
+ if output_value == 'token_embeddings':
1228
+ raise NotImplementedError
1229
+ elif output_value is None:
1230
+ raise NotImplementedError
1231
+ else:
1232
+ embeddings = self.mean_pooling(
1233
+ token_embs, encoded_input['attention_mask']
1234
+ )
1235
+
1236
+ if normalize_embeddings:
1237
+ embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
1238
+
1239
+ if convert_to_numpy:
1240
+ embeddings = embeddings.cpu()
1241
+ all_embeddings.extend(embeddings)
1242
+
1243
+ all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
1244
+
1245
+ if convert_to_tensor:
1246
+ all_embeddings = torch.stack(all_embeddings)
1247
+ elif convert_to_numpy:
1248
+ all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
1249
+
1250
+ if input_was_string:
1251
+ all_embeddings = all_embeddings[0]
1252
+
1253
+ self.train(is_training)
1254
+ return all_embeddings
1255
+
1256
+ def mean_pooling(
1257
+ self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
1258
+ ):
1259
+ input_mask_expanded = (
1260
+ attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
1261
+ )
1262
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
1263
+ input_mask_expanded.sum(1), min=1e-9
1264
+ )
1265
+
1266
+ def get_input_embeddings(self):
1267
+ return self.embeddings.word_embeddings
1268
+
1269
+ def set_input_embeddings(self, value):
1270
+ self.embeddings.word_embeddings = value
1271
+
1272
+ def _prune_heads(self, heads_to_prune):
1273
+ """
1274
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1275
+ class PreTrainedModel
1276
+ """
1277
+ for layer, heads in heads_to_prune.items():
1278
+ self.encoder.layer[layer].attention.prune_heads(heads)
1279
+
1280
+ @add_start_docstrings_to_model_forward(
1281
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1282
+ )
1283
+ @add_code_sample_docstrings(
1284
+ checkpoint=_CHECKPOINT_FOR_DOC,
1285
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
1286
+ config_class=_CONFIG_FOR_DOC,
1287
+ )
1288
+ def forward(
1289
+ self,
1290
+ input_ids: Optional[torch.Tensor] = None,
1291
+ attention_mask: Optional[torch.Tensor] = None,
1292
+ token_type_ids: Optional[torch.Tensor] = None,
1293
+ position_ids: Optional[torch.Tensor] = None,
1294
+ head_mask: Optional[torch.Tensor] = None,
1295
+ inputs_embeds: Optional[torch.Tensor] = None,
1296
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1297
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1298
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1299
+ use_cache: Optional[bool] = None,
1300
+ output_attentions: Optional[bool] = None,
1301
+ output_hidden_states: Optional[bool] = None,
1302
+ return_dict: Optional[bool] = None,
1303
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1304
+ r"""
1305
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1306
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1307
+ the model is configured as a decoder.
1308
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1309
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1310
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1311
+
1312
+ - 1 for tokens that are **not masked**,
1313
+ - 0 for tokens that are **masked**.
1314
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1315
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1316
+
1317
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1318
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1319
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1320
+ use_cache (`bool`, *optional*):
1321
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1322
+ `past_key_values`).
1323
+ """
1324
+ output_attentions = (
1325
+ output_attentions
1326
+ if output_attentions is not None
1327
+ else self.config.output_attentions
1328
+ )
1329
+ output_hidden_states = (
1330
+ output_hidden_states
1331
+ if output_hidden_states is not None
1332
+ else self.config.output_hidden_states
1333
+ )
1334
+ return_dict = (
1335
+ return_dict if return_dict is not None else self.config.use_return_dict
1336
+ )
1337
+
1338
+ if self.config.is_decoder:
1339
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1340
+ else:
1341
+ use_cache = False
1342
+
1343
+ if input_ids is not None and inputs_embeds is not None:
1344
+ raise ValueError(
1345
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1346
+ )
1347
+ elif input_ids is not None:
1348
+ # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1349
+ input_shape = input_ids.size()
1350
+ elif inputs_embeds is not None:
1351
+ input_shape = inputs_embeds.size()[:-1]
1352
+ else:
1353
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1354
+
1355
+ batch_size, seq_length = input_shape
1356
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1357
+
1358
+ # past_key_values_length
1359
+ past_key_values_length = (
1360
+ past_key_values[0][0].shape[2] if past_key_values is not None else 0
1361
+ )
1362
+
1363
+ if attention_mask is None:
1364
+ attention_mask = torch.ones(
1365
+ ((batch_size, seq_length + past_key_values_length)), device=device
1366
+ )
1367
+
1368
+ if token_type_ids is None:
1369
+ if hasattr(self.embeddings, "token_type_ids"):
1370
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1371
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
1372
+ batch_size, seq_length
1373
+ )
1374
+ token_type_ids = buffered_token_type_ids_expanded
1375
+ else:
1376
+ token_type_ids = torch.zeros(
1377
+ input_shape, dtype=torch.long, device=device
1378
+ )
1379
+
1380
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1381
+ # ourselves in which case we just need to make it broadcastable to all heads.
1382
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
1383
+ attention_mask, input_shape
1384
+ )
1385
+
1386
+ # If a 2D or 3D attention mask is provided for the cross-attention
1387
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1388
+ if self.config.is_decoder and encoder_hidden_states is not None:
1389
+ (
1390
+ encoder_batch_size,
1391
+ encoder_sequence_length,
1392
+ _,
1393
+ ) = encoder_hidden_states.size()
1394
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1395
+ if encoder_attention_mask is None:
1396
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1397
+ encoder_extended_attention_mask = self.invert_attention_mask(
1398
+ encoder_attention_mask
1399
+ )
1400
+ else:
1401
+ encoder_extended_attention_mask = None
1402
+
1403
+ # Prepare head mask if needed
1404
+ # 1.0 in head_mask indicate we keep the head
1405
+ # attention_probs has shape bsz x n_heads x N x N
1406
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1407
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1408
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1409
+
1410
+ embedding_output = self.embeddings(
1411
+ input_ids=input_ids,
1412
+ position_ids=position_ids,
1413
+ token_type_ids=token_type_ids,
1414
+ inputs_embeds=inputs_embeds,
1415
+ past_key_values_length=past_key_values_length,
1416
+ )
1417
+ encoder_outputs = self.encoder(
1418
+ embedding_output,
1419
+ attention_mask=extended_attention_mask,
1420
+ head_mask=head_mask,
1421
+ encoder_hidden_states=encoder_hidden_states,
1422
+ encoder_attention_mask=encoder_extended_attention_mask,
1423
+ past_key_values=past_key_values,
1424
+ use_cache=use_cache,
1425
+ output_attentions=output_attentions,
1426
+ output_hidden_states=output_hidden_states,
1427
+ return_dict=return_dict,
1428
+ )
1429
+ sequence_output = encoder_outputs[0]
1430
+ pooled_output = (
1431
+ self.pooler(sequence_output) if self.pooler is not None else None
1432
+ )
1433
+
1434
+ if not return_dict:
1435
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1436
+
1437
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1438
+ last_hidden_state=sequence_output,
1439
+ pooler_output=pooled_output,
1440
+ past_key_values=encoder_outputs.past_key_values,
1441
+ hidden_states=encoder_outputs.hidden_states,
1442
+ attentions=encoder_outputs.attentions,
1443
+ cross_attentions=encoder_outputs.cross_attentions,
1444
+ )
1445
+
1446
+
1447
+ @add_start_docstrings(
1448
+ """
1449
+ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
1450
+ sentence prediction (classification)` head.
1451
+ """,
1452
+ BERT_START_DOCSTRING,
1453
+ )
1454
+ class JinaBertForPreTraining(JinaBertPreTrainedModel):
1455
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1456
+
1457
+ def __init__(self, config):
1458
+ super().__init__(config)
1459
+
1460
+ self.bert = JinaBertModel(config)
1461
+ self.cls = JinaBertPreTrainingHeads(config)
1462
+
1463
+ # Initialize weights and apply final processing
1464
+ self.post_init()
1465
+
1466
+ def get_output_embeddings(self):
1467
+ return self.cls.predictions.decoder
1468
+
1469
+ def set_output_embeddings(self, new_embeddings):
1470
+ self.cls.predictions.decoder = new_embeddings
1471
+
1472
+ @add_start_docstrings_to_model_forward(
1473
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1474
+ )
1475
+ @replace_return_docstrings(
1476
+ output_type=JinaBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
1477
+ )
1478
+ def forward(
1479
+ self,
1480
+ input_ids: Optional[torch.Tensor] = None,
1481
+ attention_mask: Optional[torch.Tensor] = None,
1482
+ token_type_ids: Optional[torch.Tensor] = None,
1483
+ position_ids: Optional[torch.Tensor] = None,
1484
+ head_mask: Optional[torch.Tensor] = None,
1485
+ inputs_embeds: Optional[torch.Tensor] = None,
1486
+ labels: Optional[torch.Tensor] = None,
1487
+ next_sentence_label: Optional[torch.Tensor] = None,
1488
+ output_attentions: Optional[bool] = None,
1489
+ output_hidden_states: Optional[bool] = None,
1490
+ return_dict: Optional[bool] = None,
1491
+ ) -> Union[Tuple[torch.Tensor], JinaBertForPreTrainingOutput]:
1492
+ r"""
1493
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1494
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1495
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
1496
+ the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1497
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1498
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
1499
+ pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
1500
+
1501
+ - 0 indicates sequence B is a continuation of sequence A,
1502
+ - 1 indicates sequence B is a random sequence.
1503
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1504
+ Used to hide legacy arguments that have been deprecated.
1505
+
1506
+ Returns:
1507
+ """
1508
+ return_dict = (
1509
+ return_dict if return_dict is not None else self.config.use_return_dict
1510
+ )
1511
+
1512
+ outputs = self.bert(
1513
+ input_ids,
1514
+ attention_mask=attention_mask,
1515
+ token_type_ids=token_type_ids,
1516
+ position_ids=position_ids,
1517
+ head_mask=head_mask,
1518
+ inputs_embeds=inputs_embeds,
1519
+ output_attentions=output_attentions,
1520
+ output_hidden_states=output_hidden_states,
1521
+ return_dict=return_dict,
1522
+ )
1523
+
1524
+ sequence_output, pooled_output = outputs[:2]
1525
+ prediction_scores, seq_relationship_score = self.cls(
1526
+ sequence_output, pooled_output
1527
+ )
1528
+
1529
+ total_loss = None
1530
+ if labels is not None and next_sentence_label is not None:
1531
+ loss_fct = CrossEntropyLoss()
1532
+ masked_lm_loss = loss_fct(
1533
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1534
+ )
1535
+ next_sentence_loss = loss_fct(
1536
+ seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)
1537
+ )
1538
+ total_loss = masked_lm_loss + next_sentence_loss
1539
+
1540
+ if not return_dict:
1541
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
1542
+ return ((total_loss,) + output) if total_loss is not None else output
1543
+
1544
+ return JinaBertForPreTrainingOutput(
1545
+ loss=total_loss,
1546
+ prediction_logits=prediction_scores,
1547
+ seq_relationship_logits=seq_relationship_score,
1548
+ hidden_states=outputs.hidden_states,
1549
+ attentions=outputs.attentions,
1550
+ )
1551
+
1552
+
1553
+ @add_start_docstrings(
1554
+ """JinaBert Model with a `language modeling` head on top for CLM fine-tuning.""",
1555
+ BERT_START_DOCSTRING,
1556
+ )
1557
+ class JinaBertLMHeadModel(JinaBertPreTrainedModel):
1558
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1559
+
1560
+ def __init__(self, config):
1561
+ super().__init__(config)
1562
+
1563
+ if not config.is_decoder:
1564
+ logger.warning(
1565
+ "If you want to use `JinaBertLMHeadModel` as a standalone, add `is_decoder=True.`"
1566
+ )
1567
+
1568
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
1569
+ self.cls = JinaBertOnlyMLMHead(config)
1570
+
1571
+ # Initialize weights and apply final processing
1572
+ self.post_init()
1573
+
1574
+ def get_output_embeddings(self):
1575
+ return self.cls.predictions.decoder
1576
+
1577
+ def set_output_embeddings(self, new_embeddings):
1578
+ self.cls.predictions.decoder = new_embeddings
1579
+
1580
+ @add_start_docstrings_to_model_forward(
1581
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1582
+ )
1583
+ @add_code_sample_docstrings(
1584
+ checkpoint=_CHECKPOINT_FOR_DOC,
1585
+ output_type=CausalLMOutputWithCrossAttentions,
1586
+ config_class=_CONFIG_FOR_DOC,
1587
+ )
1588
+ def forward(
1589
+ self,
1590
+ input_ids: Optional[torch.Tensor] = None,
1591
+ attention_mask: Optional[torch.Tensor] = None,
1592
+ token_type_ids: Optional[torch.Tensor] = None,
1593
+ position_ids: Optional[torch.Tensor] = None,
1594
+ head_mask: Optional[torch.Tensor] = None,
1595
+ inputs_embeds: Optional[torch.Tensor] = None,
1596
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1597
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1598
+ labels: Optional[torch.Tensor] = None,
1599
+ past_key_values: Optional[List[torch.Tensor]] = None,
1600
+ use_cache: Optional[bool] = None,
1601
+ output_attentions: Optional[bool] = None,
1602
+ output_hidden_states: Optional[bool] = None,
1603
+ return_dict: Optional[bool] = None,
1604
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
1605
+ r"""
1606
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1607
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1608
+ the model is configured as a decoder.
1609
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1610
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1611
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1612
+
1613
+ - 1 for tokens that are **not masked**,
1614
+ - 0 for tokens that are **masked**.
1615
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1616
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1617
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1618
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
1619
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1620
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1621
+
1622
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1623
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1624
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1625
+ use_cache (`bool`, *optional*):
1626
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1627
+ `past_key_values`).
1628
+ """
1629
+ return_dict = (
1630
+ return_dict if return_dict is not None else self.config.use_return_dict
1631
+ )
1632
+ if labels is not None:
1633
+ use_cache = False
1634
+
1635
+ outputs = self.bert(
1636
+ input_ids,
1637
+ attention_mask=attention_mask,
1638
+ token_type_ids=token_type_ids,
1639
+ position_ids=position_ids,
1640
+ head_mask=head_mask,
1641
+ inputs_embeds=inputs_embeds,
1642
+ encoder_hidden_states=encoder_hidden_states,
1643
+ encoder_attention_mask=encoder_attention_mask,
1644
+ past_key_values=past_key_values,
1645
+ use_cache=use_cache,
1646
+ output_attentions=output_attentions,
1647
+ output_hidden_states=output_hidden_states,
1648
+ return_dict=return_dict,
1649
+ )
1650
+
1651
+ sequence_output = outputs[0]
1652
+ prediction_scores = self.cls(sequence_output)
1653
+
1654
+ lm_loss = None
1655
+ if labels is not None:
1656
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1657
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1658
+ labels = labels[:, 1:].contiguous()
1659
+ loss_fct = CrossEntropyLoss()
1660
+ lm_loss = loss_fct(
1661
+ shifted_prediction_scores.view(-1, self.config.vocab_size),
1662
+ labels.view(-1),
1663
+ )
1664
+
1665
+ if not return_dict:
1666
+ output = (prediction_scores,) + outputs[2:]
1667
+ return ((lm_loss,) + output) if lm_loss is not None else output
1668
+
1669
+ return CausalLMOutputWithCrossAttentions(
1670
+ loss=lm_loss,
1671
+ logits=prediction_scores,
1672
+ past_key_values=outputs.past_key_values,
1673
+ hidden_states=outputs.hidden_states,
1674
+ attentions=outputs.attentions,
1675
+ cross_attentions=outputs.cross_attentions,
1676
+ )
1677
+
1678
+ def prepare_inputs_for_generation(
1679
+ self,
1680
+ input_ids,
1681
+ past_key_values=None,
1682
+ attention_mask=None,
1683
+ use_cache=True,
1684
+ **model_kwargs,
1685
+ ):
1686
+ input_shape = input_ids.shape
1687
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1688
+ if attention_mask is None:
1689
+ attention_mask = input_ids.new_ones(input_shape)
1690
+
1691
+ # cut decoder_input_ids if past_key_values is used
1692
+ if past_key_values is not None:
1693
+ input_ids = input_ids[:, -1:]
1694
+
1695
+ return {
1696
+ "input_ids": input_ids,
1697
+ "attention_mask": attention_mask,
1698
+ "past_key_values": past_key_values,
1699
+ "use_cache": use_cache,
1700
+ }
1701
+
1702
+ def _reorder_cache(self, past_key_values, beam_idx):
1703
+ reordered_past = ()
1704
+ for layer_past in past_key_values:
1705
+ reordered_past += (
1706
+ tuple(
1707
+ past_state.index_select(0, beam_idx) for past_state in layer_past
1708
+ ),
1709
+ )
1710
+ return reordered_past
1711
+
1712
+
1713
+ @add_start_docstrings(
1714
+ """JinaBert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING
1715
+ )
1716
+ class JinaBertForMaskedLM(JinaBertPreTrainedModel):
1717
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1718
+
1719
+ def __init__(self, config):
1720
+ super().__init__(config)
1721
+
1722
+ if config.is_decoder:
1723
+ logger.warning(
1724
+ "If you want to use `JinaBertForMaskedLM` make sure `config.is_decoder=False` for "
1725
+ "bi-directional self-attention."
1726
+ )
1727
+
1728
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
1729
+ self.cls = JinaBertOnlyMLMHead(config)
1730
+
1731
+ # Initialize weights and apply final processing
1732
+ self.post_init()
1733
+
1734
+ def get_output_embeddings(self):
1735
+ return self.cls.predictions.decoder
1736
+
1737
+ def set_output_embeddings(self, new_embeddings):
1738
+ self.cls.predictions.decoder = new_embeddings
1739
+
1740
+ @add_start_docstrings_to_model_forward(
1741
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1742
+ )
1743
+ @add_code_sample_docstrings(
1744
+ checkpoint=_CHECKPOINT_FOR_DOC,
1745
+ output_type=MaskedLMOutput,
1746
+ config_class=_CONFIG_FOR_DOC,
1747
+ expected_output="'paris'",
1748
+ expected_loss=0.88,
1749
+ )
1750
+ def forward(
1751
+ self,
1752
+ input_ids: Optional[torch.Tensor] = None,
1753
+ attention_mask: Optional[torch.Tensor] = None,
1754
+ token_type_ids: Optional[torch.Tensor] = None,
1755
+ position_ids: Optional[torch.Tensor] = None,
1756
+ head_mask: Optional[torch.Tensor] = None,
1757
+ inputs_embeds: Optional[torch.Tensor] = None,
1758
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1759
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1760
+ labels: Optional[torch.Tensor] = None,
1761
+ output_attentions: Optional[bool] = None,
1762
+ output_hidden_states: Optional[bool] = None,
1763
+ return_dict: Optional[bool] = None,
1764
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1765
+ r"""
1766
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1767
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1768
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1769
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1770
+ """
1771
+
1772
+ return_dict = (
1773
+ return_dict if return_dict is not None else self.config.use_return_dict
1774
+ )
1775
+
1776
+ outputs = self.bert(
1777
+ input_ids,
1778
+ attention_mask=attention_mask,
1779
+ token_type_ids=token_type_ids,
1780
+ position_ids=position_ids,
1781
+ head_mask=head_mask,
1782
+ inputs_embeds=inputs_embeds,
1783
+ encoder_hidden_states=encoder_hidden_states,
1784
+ encoder_attention_mask=encoder_attention_mask,
1785
+ output_attentions=output_attentions,
1786
+ output_hidden_states=output_hidden_states,
1787
+ return_dict=return_dict,
1788
+ )
1789
+
1790
+ sequence_output = outputs[0]
1791
+ prediction_scores = self.cls(sequence_output)
1792
+
1793
+ masked_lm_loss = None
1794
+ if labels is not None:
1795
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1796
+ masked_lm_loss = loss_fct(
1797
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1798
+ )
1799
+
1800
+ if not return_dict:
1801
+ output = (prediction_scores,) + outputs[2:]
1802
+ return (
1803
+ ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1804
+ )
1805
+
1806
+ return MaskedLMOutput(
1807
+ loss=masked_lm_loss,
1808
+ logits=prediction_scores,
1809
+ hidden_states=outputs.hidden_states,
1810
+ attentions=outputs.attentions,
1811
+ )
1812
+
1813
+ def prepare_inputs_for_generation(
1814
+ self, input_ids, attention_mask=None, **model_kwargs
1815
+ ):
1816
+ input_shape = input_ids.shape
1817
+ effective_batch_size = input_shape[0]
1818
+
1819
+ # add a dummy token
1820
+ if self.config.pad_token_id is None:
1821
+ raise ValueError("The PAD token should be defined for generation")
1822
+
1823
+ attention_mask = torch.cat(
1824
+ [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
1825
+ dim=-1,
1826
+ )
1827
+ dummy_token = torch.full(
1828
+ (effective_batch_size, 1),
1829
+ self.config.pad_token_id,
1830
+ dtype=torch.long,
1831
+ device=input_ids.device,
1832
+ )
1833
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
1834
+
1835
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
1836
+
1837
+
1838
+ @add_start_docstrings(
1839
+ """JinaBert Model with a `next sentence prediction (classification)` head on top.""",
1840
+ BERT_START_DOCSTRING,
1841
+ )
1842
+ class JinaBertForNextSentencePrediction(JinaBertPreTrainedModel):
1843
+ def __init__(self, config):
1844
+ super().__init__(config)
1845
+
1846
+ self.bert = JinaBertModel(config)
1847
+ self.cls = JinaBertOnlyNSPHead(config)
1848
+
1849
+ # Initialize weights and apply final processing
1850
+ self.post_init()
1851
+
1852
+ @add_start_docstrings_to_model_forward(
1853
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1854
+ )
1855
+ @replace_return_docstrings(
1856
+ output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
1857
+ )
1858
+ def forward(
1859
+ self,
1860
+ input_ids: Optional[torch.Tensor] = None,
1861
+ attention_mask: Optional[torch.Tensor] = None,
1862
+ token_type_ids: Optional[torch.Tensor] = None,
1863
+ position_ids: Optional[torch.Tensor] = None,
1864
+ head_mask: Optional[torch.Tensor] = None,
1865
+ inputs_embeds: Optional[torch.Tensor] = None,
1866
+ labels: Optional[torch.Tensor] = None,
1867
+ output_attentions: Optional[bool] = None,
1868
+ output_hidden_states: Optional[bool] = None,
1869
+ return_dict: Optional[bool] = None,
1870
+ **kwargs,
1871
+ ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
1872
+ r"""
1873
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1874
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
1875
+ (see `input_ids` docstring). Indices should be in `[0, 1]`:
1876
+
1877
+ - 0 indicates sequence B is a continuation of sequence A,
1878
+ - 1 indicates sequence B is a random sequence.
1879
+
1880
+ Returns:
1881
+ """
1882
+
1883
+ if "next_sentence_label" in kwargs:
1884
+ warnings.warn(
1885
+ "The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
1886
+ " `labels` instead.",
1887
+ FutureWarning,
1888
+ )
1889
+ labels = kwargs.pop("next_sentence_label")
1890
+
1891
+ return_dict = (
1892
+ return_dict if return_dict is not None else self.config.use_return_dict
1893
+ )
1894
+
1895
+ outputs = self.bert(
1896
+ input_ids,
1897
+ attention_mask=attention_mask,
1898
+ token_type_ids=token_type_ids,
1899
+ position_ids=position_ids,
1900
+ head_mask=head_mask,
1901
+ inputs_embeds=inputs_embeds,
1902
+ output_attentions=output_attentions,
1903
+ output_hidden_states=output_hidden_states,
1904
+ return_dict=return_dict,
1905
+ )
1906
+
1907
+ pooled_output = outputs[1]
1908
+
1909
+ seq_relationship_scores = self.cls(pooled_output)
1910
+
1911
+ next_sentence_loss = None
1912
+ if labels is not None:
1913
+ loss_fct = CrossEntropyLoss()
1914
+ next_sentence_loss = loss_fct(
1915
+ seq_relationship_scores.view(-1, 2), labels.view(-1)
1916
+ )
1917
+
1918
+ if not return_dict:
1919
+ output = (seq_relationship_scores,) + outputs[2:]
1920
+ return (
1921
+ ((next_sentence_loss,) + output)
1922
+ if next_sentence_loss is not None
1923
+ else output
1924
+ )
1925
+
1926
+ return NextSentencePredictorOutput(
1927
+ loss=next_sentence_loss,
1928
+ logits=seq_relationship_scores,
1929
+ hidden_states=outputs.hidden_states,
1930
+ attentions=outputs.attentions,
1931
+ )
1932
+
1933
+
1934
+ @add_start_docstrings(
1935
+ """
1936
+ JinaBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
1937
+ output) e.g. for GLUE tasks.
1938
+ """,
1939
+ BERT_START_DOCSTRING,
1940
+ )
1941
+ class JinaBertForSequenceClassification(JinaBertPreTrainedModel):
1942
+ def __init__(self, config):
1943
+ super().__init__(config)
1944
+ self.num_labels = config.num_labels
1945
+ self.config = config
1946
+
1947
+ self.bert = JinaBertModel(config)
1948
+ classifier_dropout = (
1949
+ config.classifier_dropout
1950
+ if config.classifier_dropout is not None
1951
+ else config.hidden_dropout_prob
1952
+ )
1953
+ self.dropout = nn.Dropout(classifier_dropout)
1954
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1955
+
1956
+ # Initialize weights and apply final processing
1957
+ self.post_init()
1958
+
1959
+ @add_start_docstrings_to_model_forward(
1960
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1961
+ )
1962
+ @add_code_sample_docstrings(
1963
+ checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
1964
+ output_type=SequenceClassifierOutput,
1965
+ config_class=_CONFIG_FOR_DOC,
1966
+ expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
1967
+ expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
1968
+ )
1969
+ def forward(
1970
+ self,
1971
+ input_ids: Optional[torch.Tensor] = None,
1972
+ attention_mask: Optional[torch.Tensor] = None,
1973
+ token_type_ids: Optional[torch.Tensor] = None,
1974
+ position_ids: Optional[torch.Tensor] = None,
1975
+ head_mask: Optional[torch.Tensor] = None,
1976
+ inputs_embeds: Optional[torch.Tensor] = None,
1977
+ labels: Optional[torch.Tensor] = None,
1978
+ output_attentions: Optional[bool] = None,
1979
+ output_hidden_states: Optional[bool] = None,
1980
+ return_dict: Optional[bool] = None,
1981
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1982
+ r"""
1983
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1984
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1985
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1986
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1987
+ """
1988
+ return_dict = (
1989
+ return_dict if return_dict is not None else self.config.use_return_dict
1990
+ )
1991
+
1992
+ outputs = self.bert(
1993
+ input_ids,
1994
+ attention_mask=attention_mask,
1995
+ token_type_ids=token_type_ids,
1996
+ position_ids=position_ids,
1997
+ head_mask=head_mask,
1998
+ inputs_embeds=inputs_embeds,
1999
+ output_attentions=output_attentions,
2000
+ output_hidden_states=output_hidden_states,
2001
+ return_dict=return_dict,
2002
+ )
2003
+
2004
+ pooled_output = outputs[1]
2005
+
2006
+ pooled_output = self.dropout(pooled_output)
2007
+ logits = self.classifier(pooled_output)
2008
+
2009
+ loss = None
2010
+ if labels is not None:
2011
+ if self.config.problem_type is None:
2012
+ if self.num_labels == 1:
2013
+ self.config.problem_type = "regression"
2014
+ elif self.num_labels > 1 and (
2015
+ labels.dtype == torch.long or labels.dtype == torch.int
2016
+ ):
2017
+ self.config.problem_type = "single_label_classification"
2018
+ else:
2019
+ self.config.problem_type = "multi_label_classification"
2020
+
2021
+ if self.config.problem_type == "regression":
2022
+ loss_fct = MSELoss()
2023
+ if self.num_labels == 1:
2024
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
2025
+ else:
2026
+ loss = loss_fct(logits, labels)
2027
+ elif self.config.problem_type == "single_label_classification":
2028
+ loss_fct = CrossEntropyLoss()
2029
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
2030
+ elif self.config.problem_type == "multi_label_classification":
2031
+ loss_fct = BCEWithLogitsLoss()
2032
+ loss = loss_fct(logits, labels)
2033
+ if not return_dict:
2034
+ output = (logits,) + outputs[2:]
2035
+ return ((loss,) + output) if loss is not None else output
2036
+
2037
+ return SequenceClassifierOutput(
2038
+ loss=loss,
2039
+ logits=logits,
2040
+ hidden_states=outputs.hidden_states,
2041
+ attentions=outputs.attentions,
2042
+ )
2043
+
2044
+
2045
+ @add_start_docstrings(
2046
+ """
2047
+ JinaBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
2048
+ softmax) e.g. for RocStories/SWAG tasks.
2049
+ """,
2050
+ BERT_START_DOCSTRING,
2051
+ )
2052
+ class JinaBertForMultipleChoice(JinaBertPreTrainedModel):
2053
+ def __init__(self, config):
2054
+ super().__init__(config)
2055
+
2056
+ self.bert = JinaBertModel(config)
2057
+ classifier_dropout = (
2058
+ config.classifier_dropout
2059
+ if config.classifier_dropout is not None
2060
+ else config.hidden_dropout_prob
2061
+ )
2062
+ self.dropout = nn.Dropout(classifier_dropout)
2063
+ self.classifier = nn.Linear(config.hidden_size, 1)
2064
+
2065
+ # Initialize weights and apply final processing
2066
+ self.post_init()
2067
+
2068
+ @add_start_docstrings_to_model_forward(
2069
+ BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
2070
+ )
2071
+ @add_code_sample_docstrings(
2072
+ checkpoint=_CHECKPOINT_FOR_DOC,
2073
+ output_type=MultipleChoiceModelOutput,
2074
+ config_class=_CONFIG_FOR_DOC,
2075
+ )
2076
+ def forward(
2077
+ self,
2078
+ input_ids: Optional[torch.Tensor] = None,
2079
+ attention_mask: Optional[torch.Tensor] = None,
2080
+ token_type_ids: Optional[torch.Tensor] = None,
2081
+ position_ids: Optional[torch.Tensor] = None,
2082
+ head_mask: Optional[torch.Tensor] = None,
2083
+ inputs_embeds: Optional[torch.Tensor] = None,
2084
+ labels: Optional[torch.Tensor] = None,
2085
+ output_attentions: Optional[bool] = None,
2086
+ output_hidden_states: Optional[bool] = None,
2087
+ return_dict: Optional[bool] = None,
2088
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
2089
+ r"""
2090
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2091
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
2092
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
2093
+ `input_ids` above)
2094
+ """
2095
+ return_dict = (
2096
+ return_dict if return_dict is not None else self.config.use_return_dict
2097
+ )
2098
+ num_choices = (
2099
+ input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
2100
+ )
2101
+
2102
+ input_ids = (
2103
+ input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
2104
+ )
2105
+ attention_mask = (
2106
+ attention_mask.view(-1, attention_mask.size(-1))
2107
+ if attention_mask is not None
2108
+ else None
2109
+ )
2110
+ token_type_ids = (
2111
+ token_type_ids.view(-1, token_type_ids.size(-1))
2112
+ if token_type_ids is not None
2113
+ else None
2114
+ )
2115
+ position_ids = (
2116
+ position_ids.view(-1, position_ids.size(-1))
2117
+ if position_ids is not None
2118
+ else None
2119
+ )
2120
+ inputs_embeds = (
2121
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
2122
+ if inputs_embeds is not None
2123
+ else None
2124
+ )
2125
+
2126
+ outputs = self.bert(
2127
+ input_ids,
2128
+ attention_mask=attention_mask,
2129
+ token_type_ids=token_type_ids,
2130
+ position_ids=position_ids,
2131
+ head_mask=head_mask,
2132
+ inputs_embeds=inputs_embeds,
2133
+ output_attentions=output_attentions,
2134
+ output_hidden_states=output_hidden_states,
2135
+ return_dict=return_dict,
2136
+ )
2137
+
2138
+ pooled_output = outputs[1]
2139
+
2140
+ pooled_output = self.dropout(pooled_output)
2141
+ logits = self.classifier(pooled_output)
2142
+ reshaped_logits = logits.view(-1, num_choices)
2143
+
2144
+ loss = None
2145
+ if labels is not None:
2146
+ loss_fct = CrossEntropyLoss()
2147
+ loss = loss_fct(reshaped_logits, labels)
2148
+
2149
+ if not return_dict:
2150
+ output = (reshaped_logits,) + outputs[2:]
2151
+ return ((loss,) + output) if loss is not None else output
2152
+
2153
+ return MultipleChoiceModelOutput(
2154
+ loss=loss,
2155
+ logits=reshaped_logits,
2156
+ hidden_states=outputs.hidden_states,
2157
+ attentions=outputs.attentions,
2158
+ )
2159
+
2160
+
2161
+ @add_start_docstrings(
2162
+ """
2163
+ JinaBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
2164
+ Named-Entity-Recognition (NER) tasks.
2165
+ """,
2166
+ BERT_START_DOCSTRING,
2167
+ )
2168
+ class JinaBertForTokenClassification(JinaBertPreTrainedModel):
2169
+ def __init__(self, config):
2170
+ super().__init__(config)
2171
+ self.num_labels = config.num_labels
2172
+
2173
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
2174
+ classifier_dropout = (
2175
+ config.classifier_dropout
2176
+ if config.classifier_dropout is not None
2177
+ else config.hidden_dropout_prob
2178
+ )
2179
+ self.dropout = nn.Dropout(classifier_dropout)
2180
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
2181
+
2182
+ # Initialize weights and apply final processing
2183
+ self.post_init()
2184
+
2185
+ @add_start_docstrings_to_model_forward(
2186
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
2187
+ )
2188
+ @add_code_sample_docstrings(
2189
+ checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
2190
+ output_type=TokenClassifierOutput,
2191
+ config_class=_CONFIG_FOR_DOC,
2192
+ expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
2193
+ expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
2194
+ )
2195
+ def forward(
2196
+ self,
2197
+ input_ids: Optional[torch.Tensor] = None,
2198
+ attention_mask: Optional[torch.Tensor] = None,
2199
+ token_type_ids: Optional[torch.Tensor] = None,
2200
+ position_ids: Optional[torch.Tensor] = None,
2201
+ head_mask: Optional[torch.Tensor] = None,
2202
+ inputs_embeds: Optional[torch.Tensor] = None,
2203
+ labels: Optional[torch.Tensor] = None,
2204
+ output_attentions: Optional[bool] = None,
2205
+ output_hidden_states: Optional[bool] = None,
2206
+ return_dict: Optional[bool] = None,
2207
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
2208
+ r"""
2209
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
2210
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
2211
+ """
2212
+ return_dict = (
2213
+ return_dict if return_dict is not None else self.config.use_return_dict
2214
+ )
2215
+
2216
+ outputs = self.bert(
2217
+ input_ids,
2218
+ attention_mask=attention_mask,
2219
+ token_type_ids=token_type_ids,
2220
+ position_ids=position_ids,
2221
+ head_mask=head_mask,
2222
+ inputs_embeds=inputs_embeds,
2223
+ output_attentions=output_attentions,
2224
+ output_hidden_states=output_hidden_states,
2225
+ return_dict=return_dict,
2226
+ )
2227
+
2228
+ sequence_output = outputs[0]
2229
+
2230
+ sequence_output = self.dropout(sequence_output)
2231
+ logits = self.classifier(sequence_output)
2232
+
2233
+ loss = None
2234
+ if labels is not None:
2235
+ loss_fct = CrossEntropyLoss()
2236
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
2237
+
2238
+ if not return_dict:
2239
+ output = (logits,) + outputs[2:]
2240
+ return ((loss,) + output) if loss is not None else output
2241
+
2242
+ return TokenClassifierOutput(
2243
+ loss=loss,
2244
+ logits=logits,
2245
+ hidden_states=outputs.hidden_states,
2246
+ attentions=outputs.attentions,
2247
+ )
2248
+
2249
+
2250
+ @add_start_docstrings(
2251
+ """
2252
+ JinaBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
2253
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
2254
+ """,
2255
+ BERT_START_DOCSTRING,
2256
+ )
2257
+ class JinaBertForQuestionAnswering(JinaBertPreTrainedModel):
2258
+ def __init__(self, config):
2259
+ super().__init__(config)
2260
+ self.num_labels = config.num_labels
2261
+
2262
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
2263
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
2264
+
2265
+ # Initialize weights and apply final processing
2266
+ self.post_init()
2267
+
2268
+ @add_start_docstrings_to_model_forward(
2269
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
2270
+ )
2271
+ @add_code_sample_docstrings(
2272
+ checkpoint=_CHECKPOINT_FOR_QA,
2273
+ output_type=QuestionAnsweringModelOutput,
2274
+ config_class=_CONFIG_FOR_DOC,
2275
+ qa_target_start_index=_QA_TARGET_START_INDEX,
2276
+ qa_target_end_index=_QA_TARGET_END_INDEX,
2277
+ expected_output=_QA_EXPECTED_OUTPUT,
2278
+ expected_loss=_QA_EXPECTED_LOSS,
2279
+ )
2280
+ def forward(
2281
+ self,
2282
+ input_ids: Optional[torch.Tensor] = None,
2283
+ attention_mask: Optional[torch.Tensor] = None,
2284
+ token_type_ids: Optional[torch.Tensor] = None,
2285
+ position_ids: Optional[torch.Tensor] = None,
2286
+ head_mask: Optional[torch.Tensor] = None,
2287
+ inputs_embeds: Optional[torch.Tensor] = None,
2288
+ start_positions: Optional[torch.Tensor] = None,
2289
+ end_positions: Optional[torch.Tensor] = None,
2290
+ output_attentions: Optional[bool] = None,
2291
+ output_hidden_states: Optional[bool] = None,
2292
+ return_dict: Optional[bool] = None,
2293
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
2294
+ r"""
2295
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2296
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
2297
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
2298
+ are not taken into account for computing the loss.
2299
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2300
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
2301
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
2302
+ are not taken into account for computing the loss.
2303
+ """
2304
+ return_dict = (
2305
+ return_dict if return_dict is not None else self.config.use_return_dict
2306
+ )
2307
+
2308
+ outputs = self.bert(
2309
+ input_ids,
2310
+ attention_mask=attention_mask,
2311
+ token_type_ids=token_type_ids,
2312
+ position_ids=position_ids,
2313
+ head_mask=head_mask,
2314
+ inputs_embeds=inputs_embeds,
2315
+ output_attentions=output_attentions,
2316
+ output_hidden_states=output_hidden_states,
2317
+ return_dict=return_dict,
2318
+ )
2319
+
2320
+ sequence_output = outputs[0]
2321
+
2322
+ logits = self.qa_outputs(sequence_output)
2323
+ start_logits, end_logits = logits.split(1, dim=-1)
2324
+ start_logits = start_logits.squeeze(-1).contiguous()
2325
+ end_logits = end_logits.squeeze(-1).contiguous()
2326
+
2327
+ total_loss = None
2328
+ if start_positions is not None and end_positions is not None:
2329
+ # If we are on multi-GPU, split add a dimension
2330
+ if len(start_positions.size()) > 1:
2331
+ start_positions = start_positions.squeeze(-1)
2332
+ if len(end_positions.size()) > 1:
2333
+ end_positions = end_positions.squeeze(-1)
2334
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
2335
+ ignored_index = start_logits.size(1)
2336
+ start_positions = start_positions.clamp(0, ignored_index)
2337
+ end_positions = end_positions.clamp(0, ignored_index)
2338
+
2339
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
2340
+ start_loss = loss_fct(start_logits, start_positions)
2341
+ end_loss = loss_fct(end_logits, end_positions)
2342
+ total_loss = (start_loss + end_loss) / 2
2343
+
2344
+ if not return_dict:
2345
+ output = (start_logits, end_logits) + outputs[2:]
2346
+ return ((total_loss,) + output) if total_loss is not None else output
2347
+
2348
+ return QuestionAnsweringModelOutput(
2349
+ loss=total_loss,
2350
+ start_logits=start_logits,
2351
+ end_logits=end_logits,
2352
+ hidden_states=outputs.hidden_states,
2353
+ attentions=outputs.attentions,
2354
+ )
2355
+
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 2147483648,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff