Corran commited on
Commit
cafc376
·
1 Parent(s): a20e1a6

Add SetFit model

Browse files
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -8,23 +8,27 @@ tags:
8
  metrics:
9
  - accuracy
10
  widget:
11
- - text: For example, we cannot conclusively rule out the possibility that the five
12
- wedges represent more than five seismic slip events.
13
- - text: Therefore the improvement of Aceclofenac dissolution is an important issue
14
- for enhancing its onset of action and therapeutic efficacy.
15
- - text: After removal of protists and in situ incubations in dialysis bags, members
16
- of the beta I clade increased to almost 30% of total cells within 24 h. It is
17
- thus likely that these bacteria contributed disproportionally to the flux of organic
18
- carbon from the picoplankton to the higher trophic levels.
19
- - text: At the conclusion of the study, participants were asked to comment on the
20
- purpose of the&study.
21
- - text: It is therefore likely that many PEV chargers will trip in the 0.20-0.25 s
22
- time frame.
 
 
 
 
23
  pipeline_tag: text-classification
24
  inference: true
25
- base_model: jinaai/jina-embeddings-v2-base-en
26
  model-index:
27
- - name: SetFit with jinaai/jina-embeddings-v2-base-en
28
  results:
29
  - task:
30
  type: text-classification
@@ -35,13 +39,13 @@ model-index:
35
  split: test
36
  metrics:
37
  - type: accuracy
38
- value: 0.9777777777777777
39
  name: Accuracy
40
  ---
41
 
42
- # SetFit with jinaai/jina-embeddings-v2-base-en
43
 
44
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
45
 
46
  The model has been trained using an efficient few-shot learning technique that involves:
47
 
@@ -52,9 +56,9 @@ The model has been trained using an efficient few-shot learning technique that i
52
 
53
  ### Model Description
54
  - **Model Type:** SetFit
55
- - **Sentence Transformer body:** [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en)
56
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
57
- - **Maximum Sequence Length:** 8192 tokens
58
  - **Number of Classes:** 9 classes
59
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
60
  <!-- - **Language:** Unknown -->
@@ -84,7 +88,7 @@ The model has been trained using an efficient few-shot learning technique that i
84
  ### Metrics
85
  | Label | Accuracy |
86
  |:--------|:---------|
87
- | **all** | 0.9778 |
88
 
89
  ## Uses
90
 
@@ -104,7 +108,7 @@ from setfit import SetFitModel
104
  # Download from the 🤗 Hub
105
  model = SetFitModel.from_pretrained("Corran/Jina_Sci")
106
  # Run inference
107
- preds = model("It is therefore likely that many PEV chargers will trip in the 0.20-0.25 s time frame.")
108
  ```
109
 
110
  <!--
@@ -136,26 +140,26 @@ preds = model("It is therefore likely that many PEV chargers will trip in the 0.
136
  ### Training Set Metrics
137
  | Training set | Min | Median | Max |
138
  |:-------------|:----|:--------|:----|
139
- | Word count | 5 | 25.0778 | 98 |
140
 
141
  | Label | Training Sample Count |
142
  |:------|:----------------------|
143
- | 1 | 30 |
144
- | 2 | 30 |
145
- | 3 | 30 |
146
- | 4 | 30 |
147
- | 5 | 30 |
148
- | 6 | 30 |
149
- | 7 | 30 |
150
- | 8 | 30 |
151
- | 9 | 30 |
152
 
153
  ### Training Hyperparameters
154
- - batch_size: (15, 15)
155
  - num_epochs: (1, 1)
156
  - max_steps: -1
157
  - sampling_strategy: oversampling
158
- - num_iterations: 30
159
  - body_learning_rate: (2e-05, 2e-05)
160
  - head_learning_rate: 2e-05
161
  - loss: CosineSimilarityLoss
@@ -171,28 +175,21 @@ preds = model("It is therefore likely that many PEV chargers will trip in the 0.
171
  ### Training Results
172
  | Epoch | Step | Training Loss | Validation Loss |
173
  |:------:|:----:|:-------------:|:---------------:|
174
- | 0.0009 | 1 | 0.2692 | - |
175
- | 0.0463 | 50 | 0.2293 | - |
176
- | 0.0926 | 100 | 0.1244 | - |
177
- | 0.1389 | 150 | 0.1245 | - |
178
- | 0.1852 | 200 | 0.0595 | - |
179
- | 0.2315 | 250 | 0.0102 | - |
180
- | 0.2778 | 300 | 0.0042 | - |
181
- | 0.3241 | 350 | 0.0036 | - |
182
- | 0.3704 | 400 | 0.0031 | - |
183
- | 0.4167 | 450 | 0.0015 | - |
184
- | 0.4630 | 500 | 0.0007 | - |
185
- | 0.5093 | 550 | 0.0008 | - |
186
- | 0.5556 | 600 | 0.0008 | - |
187
- | 0.6019 | 650 | 0.0006 | - |
188
- | 0.6481 | 700 | 0.0005 | - |
189
- | 0.6944 | 750 | 0.0006 | - |
190
- | 0.7407 | 800 | 0.0006 | - |
191
- | 0.7870 | 850 | 0.0006 | - |
192
- | 0.8333 | 900 | 0.0007 | - |
193
- | 0.8796 | 950 | 0.0005 | - |
194
- | 0.9259 | 1000 | 0.0004 | - |
195
- | 0.9722 | 1050 | 0.0003 | - |
196
 
197
  ### Framework Versions
198
  - Python: 3.10.12
 
8
  metrics:
9
  - accuracy
10
  widget:
11
+ - text: '6) , it is interesting to note how, going from lateral to downstream positions,
12
+ from 1 to 13: -charged hadrons (protons, pions, kaons) contribution rises from
13
+ 34% to 48%; -electrons and positrons contribution rises from 30% to 40%; -muons
14
+ doses are stable around the 3-4%, representing an almost negligible portion of
15
+ the total; -photons doses decrease from 24% to 7% in terms of contribution to
16
+ the total; -neutrons contribution goes down from 8.5% to 2.5% in terms of contribution
17
+ to the total.'
18
+ - text: the study was conducted in 2015 on adolescent undergraduate university students
19
+ of three fields of study -humanities, as well as medical and technical courses.
20
+ - text: For this purpose, it was first necessary to discover the interdependencies
21
+ of the data attributes.
22
+ - text: The patients included in this study were recruited from the Vascular Department
23
+ of West China Hospital, Sichuan University, between January 2009 and January 2011.
24
+ - text: 1 Likewise, age at diagnosis (P Ͻ 0.001), primary site (P ϭ 0.04), number
25
+ of positive nodes (P Ͻ 0.001), and depth of invasion (P Ͻ 0.001) had a significant
26
+ impact on diseasespecific survival of the MRI patients.
27
  pipeline_tag: text-classification
28
  inference: true
29
+ base_model: sentence-transformers/all-MiniLM-L6-v2
30
  model-index:
31
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
32
  results:
33
  - task:
34
  type: text-classification
 
39
  split: test
40
  metrics:
41
  - type: accuracy
42
+ value: 0.9433333333333334
43
  name: Accuracy
44
  ---
45
 
46
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
47
 
48
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
49
 
50
  The model has been trained using an efficient few-shot learning technique that involves:
51
 
 
56
 
57
  ### Model Description
58
  - **Model Type:** SetFit
59
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
60
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
61
+ - **Maximum Sequence Length:** 256 tokens
62
  - **Number of Classes:** 9 classes
63
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
64
  <!-- - **Language:** Unknown -->
 
88
  ### Metrics
89
  | Label | Accuracy |
90
  |:--------|:---------|
91
+ | **all** | 0.9433 |
92
 
93
  ## Uses
94
 
 
108
  # Download from the 🤗 Hub
109
  model = SetFitModel.from_pretrained("Corran/Jina_Sci")
110
  # Run inference
111
+ preds = model("For this purpose, it was first necessary to discover the interdependencies of the data attributes.")
112
  ```
113
 
114
  <!--
 
140
  ### Training Set Metrics
141
  | Training set | Min | Median | Max |
142
  |:-------------|:----|:--------|:----|
143
+ | Word count | 5 | 26.2526 | 128 |
144
 
145
  | Label | Training Sample Count |
146
  |:------|:----------------------|
147
+ | 1 | 300 |
148
+ | 2 | 300 |
149
+ | 3 | 300 |
150
+ | 4 | 300 |
151
+ | 5 | 300 |
152
+ | 6 | 300 |
153
+ | 7 | 300 |
154
+ | 8 | 300 |
155
+ | 9 | 300 |
156
 
157
  ### Training Hyperparameters
158
+ - batch_size: (75, 75)
159
  - num_epochs: (1, 1)
160
  - max_steps: -1
161
  - sampling_strategy: oversampling
162
+ - num_iterations: 10
163
  - body_learning_rate: (2e-05, 2e-05)
164
  - head_learning_rate: 2e-05
165
  - loss: CosineSimilarityLoss
 
175
  ### Training Results
176
  | Epoch | Step | Training Loss | Validation Loss |
177
  |:------:|:----:|:-------------:|:---------------:|
178
+ | 0.0014 | 1 | 0.4034 | - |
179
+ | 0.0694 | 50 | 0.2314 | - |
180
+ | 0.1389 | 100 | 0.1816 | - |
181
+ | 0.2083 | 150 | 0.1708 | - |
182
+ | 0.2778 | 200 | 0.1079 | - |
183
+ | 0.3472 | 250 | 0.1407 | - |
184
+ | 0.4167 | 300 | 0.0788 | - |
185
+ | 0.4861 | 350 | 0.0565 | - |
186
+ | 0.5556 | 400 | 0.0651 | - |
187
+ | 0.625 | 450 | 0.0402 | - |
188
+ | 0.6944 | 500 | 0.0468 | - |
189
+ | 0.7639 | 550 | 0.055 | - |
190
+ | 0.8333 | 600 | 0.0473 | - |
191
+ | 0.9028 | 650 | 0.0605 | - |
192
+ | 0.9722 | 700 | 0.03 | - |
 
 
 
 
 
 
 
193
 
194
  ### Framework Versions
195
  - Python: 3.10.12
config.json CHANGED
@@ -1,36 +1,26 @@
1
  {
2
- "_name_or_path": "/root/.cache/torch/sentence_transformers/jinaai_jina-embeddings-v2-base-en/",
3
  "architectures": [
4
- "JinaBertModel"
5
  ],
6
- "attention_probs_dropout_prob": 0.0,
7
- "attn_implementation": "torch",
8
- "auto_map": {
9
- "AutoConfig": "configuration_bert.JinaBertConfig",
10
- "AutoModel": "modeling_bert.JinaBertModel",
11
- "AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
12
- "AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
13
- },
14
  "classifier_dropout": null,
15
- "emb_pooler": "mean",
16
- "feed_forward_type": "geglu",
17
  "gradient_checkpointing": false,
18
  "hidden_act": "gelu",
19
  "hidden_dropout_prob": 0.1,
20
- "hidden_size": 768,
21
  "initializer_range": 0.02,
22
- "intermediate_size": 3072,
23
  "layer_norm_eps": 1e-12,
24
- "max_position_embeddings": 8192,
25
- "model_max_length": 8192,
26
  "model_type": "bert",
27
  "num_attention_heads": 12,
28
- "num_hidden_layers": 12,
29
  "pad_token_id": 0,
30
- "position_embedding_type": "alibi",
31
  "torch_dtype": "float32",
32
  "transformers_version": "4.35.2",
33
  "type_vocab_size": 2,
34
  "use_cache": true,
35
- "vocab_size": 30528
36
  }
 
1
  {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
3
  "architectures": [
4
+ "BertModel"
5
  ],
6
+ "attention_probs_dropout_prob": 0.1,
 
 
 
 
 
 
 
7
  "classifier_dropout": null,
 
 
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
  "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
 
16
  "model_type": "bert",
17
  "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
  "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
  "transformers_version": "4.35.2",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
+ "vocab_size": 30522
26
  }
config_sentence_transformers.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "__version__": {
3
- "sentence_transformers": "2.2.2",
4
- "transformers": "4.31.0",
5
- "pytorch": "2.0.1"
6
  }
7
  }
 
1
  {
2
  "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
  }
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c49986bb9f2e7acb06240510be0e6957916666252e860c2bb48c0f46936a6777
3
- size 549493968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cd93b873f934fbe3a1d10049c161f170826c92f8a75494c1691c4e1f3e9806e
3
+ size 90864192
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:edae54e5c1d2e81a5cae6d54fd1d1da53917803f1306d72d495ba3fb698d6e7e
3
- size 56271
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0850ce8fb35582a08b67fcbbf3b3dc95f9aa97fdc04ba4004288df94a163c2f
3
+ size 28623
modules.json CHANGED
@@ -10,5 +10,11 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 8192,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 256,
3
  "do_lower_case": false
4
  }
tokenizer.json CHANGED
@@ -2,7 +2,7 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 8192,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
@@ -30678,13 +30678,7 @@
30678
  "##/": 30518,
30679
  "##:": 30519,
30680
  "##?": 30520,
30681
- "##~": 30521,
30682
- "bowang": 30522,
30683
- "georgiosmastrapas": 30523,
30684
- "jackminong": 30524,
30685
- "alaeddineabdessalem": 30525,
30686
- "isabellemohr": 30526,
30687
- "michaelguenther": 30527
30688
  }
30689
  }
30690
  }
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 256,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
 
30678
  "##/": 30518,
30679
  "##:": 30519,
30680
  "##?": 30520,
30681
+ "##~": 30521
 
 
 
 
 
 
30682
  }
30683
  }
30684
  }
tokenizer_config.json CHANGED
@@ -46,12 +46,19 @@
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
49
- "model_max_length": 2147483648,
 
50
  "never_split": null,
 
51
  "pad_token": "[PAD]",
 
 
52
  "sep_token": "[SEP]",
 
53
  "strip_accents": null,
54
  "tokenize_chinese_chars": true,
55
  "tokenizer_class": "BertTokenizer",
 
 
56
  "unk_token": "[UNK]"
57
  }
 
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
  "never_split": null,
52
+ "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
  "sep_token": "[SEP]",
57
+ "stride": 0,
58
  "strip_accents": null,
59
  "tokenize_chinese_chars": true,
60
  "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]"
64
  }
vocab.txt CHANGED
@@ -30520,9 +30520,3 @@ necessitated
30520
  ##:
30521
  ##?
30522
  ##~
30523
- bowang
30524
- georgiosmastrapas
30525
- jackminong
30526
- alaeddineabdessalem
30527
- isabellemohr
30528
- michaelguenther
 
30520
  ##:
30521
  ##?
30522
  ##~