Corran commited on
Commit
4fcfbc9
·
verified ·
1 Parent(s): f002ac0

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: Although traditional database search methods can effectively identify peptide
9
+ matches, this approach correlates tandem mass spectral data with amino acid sequences
10
+ in a protein database 'however' providing additional confirmation and improving
11
+ identification accuracy.
12
+ - text: The study involved 30 smallholder farmers from three different regions in
13
+ Africa, each with an average farm size of 1.5 hectares and an annual income from
14
+ farming of approximately $1,500.
15
+ - text: This study aimed to evaluate the efficacy and safety of interferon α2b plus
16
+ ribavirin for 48 weeks or 24 weeks compared to interferon α2b plus placebo for
17
+ 48 weeks in the treatment of chronic hepatitis C virus infection.
18
+ - text: The study reported that 73% of the psychotherapists endorsed the use of cognitive
19
+ techniques in their treatment of eating disorders, while 61% reported using behavioral
20
+ techniques.
21
+ - text: Previous research on the psychoanalytic concept of the working alliance has
22
+ established its significance in therapeutic change and identified key components
23
+ such as the bond between therapist and client and the agreement on therapeutic
24
+ goals.
25
+ metrics:
26
+ - accuracy
27
+ pipeline_tag: text-classification
28
+ library_name: setfit
29
+ inference: true
30
+ base_model: sentence-transformers/all-MiniLM-L6-v2
31
+ model-index:
32
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
33
+ results:
34
+ - task:
35
+ type: text-classification
36
+ name: Text Classification
37
+ dataset:
38
+ name: Unknown
39
+ type: unknown
40
+ split: test
41
+ metrics:
42
+ - type: accuracy
43
+ value: 0.9498398588143016
44
+ name: Accuracy
45
+ ---
46
+
47
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
48
+
49
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
50
+
51
+ The model has been trained using an efficient few-shot learning technique that involves:
52
+
53
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
54
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
55
+
56
+ ## Model Details
57
+
58
+ ### Model Description
59
+ - **Model Type:** SetFit
60
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
61
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
62
+ - **Maximum Sequence Length:** 256 tokens
63
+ - **Number of Classes:** 2 classes
64
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
71
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
72
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
73
+
74
+ ### Model Labels
75
+ | Label | Examples |
76
+ |:------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
77
+ | Misc | <ul><li>'Pravastatin therapy in patients with average cholesterol levels following myocardial infarction has been shown to reduce the risk of coronary events, highlighting the importance of lipid-lowering therapy in internal medicine for cardiovascular disease prevention.'</li><li>'However, the efficacy of pravastatin in patients with average cholesterol levels is less clear.'</li><li>'This study investigates the impact of Pravastatin on reducing coronary events in internal medicine patients with average cholesterol levels after a myocardial infarction.'</li></ul> |
78
+ | Uncertainty | <ul><li>'Despite the widespread use of pravastatin in post-myocardial infarction patients with average cholesterol levels, the evidence regarding its impact on coronary events remains inconclusive and sometimes contradictory.'</li><li>'Despite the findings of this study showing a reduction in coronary events with Pravastatin use in patients with average cholesterol levels, contrasting evidence exists suggesting no significant benefit in similar patient populations (Miller et al., 2018).'</li><li>'Despite the proven benefits of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of cardiovascular events, particularly in coronary artery disease, there is a paucity of data specifically addressing its use in stroke or transient ischemic attack (TIA) patients.'</li></ul> |
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | Accuracy |
84
+ |:--------|:---------|
85
+ | **all** | 0.9498 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("Corran/SciGenSetfit24Binary")
104
+ # Run inference
105
+ preds = model("The study reported that 73% of the psychotherapists endorsed the use of cognitive techniques in their treatment of eating disorders, while 61% reported using behavioral techniques.")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:--------|:----|
137
+ | Word count | 8 | 29.6038 | 60 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:------------|:----------------------|
141
+ | Misc | 2500 |
142
+ | Uncertainty | 2500 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (300, 300)
146
+ - num_epochs: (1, 1)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 5
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - l2_weight: 0.01
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:------:|:----:|:-------------:|:---------------:|
166
+ | 0.0060 | 1 | 0.4529 | - |
167
+ | 0.2994 | 50 | 0.3104 | - |
168
+ | 0.5988 | 100 | 0.2514 | - |
169
+ | 0.8982 | 150 | 0.25 | - |
170
+ | 1.0 | 167 | - | 0.2479 |
171
+ | 0.0060 | 1 | 0.2406 | - |
172
+ | 0.2994 | 50 | 0.1576 | - |
173
+ | 0.5988 | 100 | 0.0912 | - |
174
+ | 0.8982 | 150 | 0.0656 | - |
175
+ | 1.0 | 167 | - | 0.0683 |
176
+ | 0.0060 | 1 | 0.0827 | - |
177
+ | 0.2994 | 50 | 0.0581 | - |
178
+ | 0.5988 | 100 | 0.0393 | - |
179
+ | 0.8982 | 150 | 0.0339 | - |
180
+ | 1.0 | 167 | - | 0.0516 |
181
+
182
+ ### Framework Versions
183
+ - Python: 3.10.12
184
+ - SetFit: 1.2.0.dev0
185
+ - Sentence Transformers: 3.1.1
186
+ - Transformers: 4.42.2
187
+ - PyTorch: 2.5.1+cu121
188
+ - Datasets: 3.2.0
189
+ - Tokenizers: 0.19.1
190
+
191
+ ## Citation
192
+
193
+ ### BibTeX
194
+ ```bibtex
195
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
196
+ doi = {10.48550/ARXIV.2209.11055},
197
+ url = {https://arxiv.org/abs/2209.11055},
198
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
199
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
200
+ title = {Efficient Few-Shot Learning Without Prompts},
201
+ publisher = {arXiv},
202
+ year = {2022},
203
+ copyright = {Creative Commons Attribution 4.0 International}
204
+ }
205
+ ```
206
+
207
+ <!--
208
+ ## Glossary
209
+
210
+ *Clearly define terms in order to be accessible across audiences.*
211
+ -->
212
+
213
+ <!--
214
+ ## Model Card Authors
215
+
216
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
217
+ -->
218
+
219
+ <!--
220
+ ## Model Card Contact
221
+
222
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
223
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "Misc",
4
+ "Uncertainty"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8207bb5942d85e2f9930bff1e665945f41699c826e7995bf26fe51f991b7e98e
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fcdc8a2ea39bda2726bb3fbbc90b55f405bf9dd6ca723e68c908f2ab44c7dea
3
+ size 4015
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff