Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,116 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
base_model:
|
5 |
+
- CrabInHoney/urlbert-tiny-base-v3
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- url
|
9 |
+
- cybersecurity
|
10 |
+
- urls
|
11 |
+
- links
|
12 |
+
- classification
|
13 |
+
- phishing-detection
|
14 |
+
- tiny
|
15 |
+
- phishing
|
16 |
+
- malware
|
17 |
+
- defacement
|
18 |
+
- transformers
|
19 |
+
- urlbert
|
20 |
+
- bert
|
21 |
+
- malicious
|
22 |
+
license: apache-2.0
|
23 |
+
---
|
24 |
+
|
25 |
+
# URLBERT-Tiny-v3 Malicious URL Classifier
|
26 |
+
|
27 |
+
This is a lightweight version of BERT, specifically fine-tuned for classifying URLs into four categories: benign, phishing, malware, and defacement.
|
28 |
+
|
29 |
+
## Model Details
|
30 |
+
|
31 |
+
- **Model size**: 3.69M parameters
|
32 |
+
- **Tensor type**: F32
|
33 |
+
- **Model weight size**: 14.8 MB
|
34 |
+
- **Base model**: [CrabInHoney/urlbert-tiny-base-v3](https://huggingface.co/CrabInHoney/urlbert-tiny-base-v3)
|
35 |
+
- **Dataset**: [Malicious URLs Dataset](https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset)
|
36 |
+
|
37 |
+
## Model Evaluation Results
|
38 |
+
|
39 |
+
The model was evaluated on a test set with the following classification metrics:
|
40 |
+
|
41 |
+
| Class | Precision | Recall | F1-Score |
|
42 |
+
|--------------|------------|------------|------------|
|
43 |
+
| Benign | 0.987695 | 0.993717 | 0.990697 |
|
44 |
+
| Defacement | 0.988510 | 0.998963 | 0.993709 |
|
45 |
+
| Malware | 0.988291 | 0.960332 | 0.974111 |
|
46 |
+
| Phishing | 0.958425 | 0.930826 | 0.944423 |
|
47 |
+
| **Accuracy** | 0.983738 | 0.983738 | 0.983738 |
|
48 |
+
| **Macro Avg**| 0.980730 | 0.970959 | 0.975735 |
|
49 |
+
| **Weighted Avg** | 0.983615 | 0.983738 | 0.983627 |
|
50 |
+
|
51 |
+
## Usage Example
|
52 |
+
|
53 |
+
Below is an example of how to use the model for URL classification using the Hugging Face `transformers` library:
|
54 |
+
|
55 |
+
```python
|
56 |
+
from transformers import BertTokenizerFast, BertForSequenceClassification, pipeline
|
57 |
+
import torch
|
58 |
+
|
59 |
+
# Определение устройства (GPU или CPU)
|
60 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
61 |
+
print(f"Используемое устройство: {device}")
|
62 |
+
|
63 |
+
# Загрузка модели и токенизатора
|
64 |
+
model_name = "CrabInHoney/urlbert-tiny-v3-malicious-url-classifier"
|
65 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
66 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
67 |
+
model.to(device)
|
68 |
+
|
69 |
+
# Создание pipeline для классификации
|
70 |
+
classifier = pipeline(
|
71 |
+
"text-classification",
|
72 |
+
model=model,
|
73 |
+
tokenizer=tokenizer,
|
74 |
+
device=0 if torch.cuda.is_available() else -1,
|
75 |
+
return_all_scores=True
|
76 |
+
)
|
77 |
+
|
78 |
+
# Примеры URL для тестирования
|
79 |
+
test_urls = [
|
80 |
+
"wikiobits.com/Obits/TonyProudfoot",
|
81 |
+
"http://www.824555.com/app/member/SportOption.php?uid=guest&langx=gb",
|
82 |
+
]
|
83 |
+
|
84 |
+
# Маппинг меток на понятные названия классов
|
85 |
+
label_mapping = {
|
86 |
+
"LABEL_0": "benign",
|
87 |
+
"LABEL_1": "defacement",
|
88 |
+
"LABEL_2": "malware",
|
89 |
+
"LABEL_3": "phishing"
|
90 |
+
}
|
91 |
+
|
92 |
+
# Классификация URL
|
93 |
+
for url in test_urls:
|
94 |
+
results = classifier(url)
|
95 |
+
print(f"\nURL: {url}")
|
96 |
+
for result in results[0]:
|
97 |
+
label = result['label']
|
98 |
+
score = result['score']
|
99 |
+
friendly_label = label_mapping.get(label, label)
|
100 |
+
print(f"Класс: {friendly_label}, вероятность: {score:.4f}")
|
101 |
+
```
|
102 |
+
|
103 |
+
### Example Output:
|
104 |
+
```
|
105 |
+
URL: wikiobits.com/Obits/TonyProudfoot
|
106 |
+
Класс: benign, вероятность: 0.9953
|
107 |
+
Класс: defacement, вероятность: 0.0000
|
108 |
+
Класс: malware, вероятность: 0.0000
|
109 |
+
Класс: phishing, вероятность: 0.0046
|
110 |
+
|
111 |
+
URL: http://www.824555.com/app/member/SportOption.php?uid=guest&langx=gb
|
112 |
+
Класс: benign, вероятность: 0.0000
|
113 |
+
Класс: defacement, вероятность: 0.0001
|
114 |
+
Класс: malware, вероятность: 0.9998
|
115 |
+
Класс: phishing, вероятность: 0.0001
|
116 |
+
```
|