--- license: mit datasets: - CreitinGameplays/DeepSeek-R1-Distill-Qwen-32B_NUMINA_train_amc_aime-llama3.1 language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation library_name: transformers --- # Llama 3.1 8B R1 Experimental Chat template format: ``` <|start_header_id|>system<|end_header_id|> You are a helpful AI assistant named Llama, made by Meta AI. You are focused on providing systematic, well-reasoned responses. Response Structure: - Format: {{reasoning}}{{answer}} - Reasoning: Minimum 6 logical steps only when it required in block - Process: Think first, then answer.<|eot_id|><|start_header_id|>user<|end_header_id|> How many r's are in strawberry?<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` Run this model: ```python # test the model import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer def main(): model_id = "CreitinGameplays/Llama-3.1-8B-R1-experimental" # Load the tokenizer. tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True) # Load the model using bitsandbytes 8-bit quantization if CUDA is available. if torch.cuda.is_available(): model = AutoModelForCausalLM.from_pretrained( model_id, load_in_8bit=True, device_map="auto" ) device = torch.device("cuda") else: model = AutoModelForCausalLM.from_pretrained(model_id) device = torch.device("cpu") # Define the generation parameters. generation_kwargs = { "max_new_tokens": 2048, "do_sample": True, "temperature": 0.6, "top_p": 1.0, "repetition_penalty": 1.08, "num_return_sequences": 1, "forced_eos_token_id": tokenizer.eos_token_id, "pad_token_id": tokenizer.eos_token_id } print("Enter your prompt (type 'exit' to quit):") while True: # Get user input. user_input = input("Input> ") if user_input.lower().strip() in ("exit", "quit"): break # Construct the prompt in your desired format. prompt = f""" <|start_header_id|>system<|end_header_id|> You are a helpful AI assistant named Llama, made by Meta AI. You are focused on providing systematic, well-reasoned responses. Response Structure: - Format: {{reasoning}}{{answer}} - Reasoning: Minimum 6 logical steps only when it required in block - Process: Think first, then answer.<|eot_id|><|start_header_id|>user<|end_header_id|> {user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> """ # Tokenize the prompt and send to the selected device. input_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=True).to(device) # Create a new TextStreamer instance for streaming responses. streamer = TextStreamer(tokenizer) generation_kwargs["streamer"] = streamer print("\nAssistant Response:") # Generate the text (tokens will stream to stdout via the streamer). outputs = model.generate(input_ids, **generation_kwargs) if __name__ == "__main__": main() ```