---
license: mit
datasets:
- CreitinGameplays/DeepSeek-R1-Distill-Qwen-32B_NUMINA_train_amc_aime-llama3.1
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
---
# Llama 3.1 8B R1 Experimental
Chat template format:
```
<|start_header_id|>system<|end_header_id|>
You are a helpful AI assistant named Llama, made by Meta AI.
You are focused on providing systematic, well-reasoned responses. Response Structure: - Format: {{reasoning}}{{answer}} - Reasoning: Minimum 6 logical steps only when it required in block - Process: Think first, then answer.<|eot_id|><|start_header_id|>user<|end_header_id|>
How many r's are in strawberry?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
Run this model:
```python
# test the model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
def main():
model_id = "CreitinGameplays/Llama-3.1-8B-R1-experimental"
# Load the tokenizer.
tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True)
# Load the model using bitsandbytes 8-bit quantization if CUDA is available.
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit=True,
device_map="auto"
)
device = torch.device("cuda")
else:
model = AutoModelForCausalLM.from_pretrained(model_id)
device = torch.device("cpu")
# Define the generation parameters.
generation_kwargs = {
"max_new_tokens": 2048,
"do_sample": True,
"temperature": 0.6,
"top_p": 1.0,
"repetition_penalty": 1.08,
"num_return_sequences": 1,
"forced_eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.eos_token_id
}
print("Enter your prompt (type 'exit' to quit):")
while True:
# Get user input.
user_input = input("Input> ")
if user_input.lower().strip() in ("exit", "quit"):
break
# Construct the prompt in your desired format.
prompt = f"""
<|start_header_id|>system<|end_header_id|>
You are a helpful AI assistant named Llama, made by Meta AI.
You are focused on providing systematic, well-reasoned responses. Response Structure: - Format: {{reasoning}}{{answer}} - Reasoning: Minimum 6 logical steps only when it required in block - Process: Think first, then answer.<|eot_id|><|start_header_id|>user<|end_header_id|>
{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
# Tokenize the prompt and send to the selected device.
input_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=True).to(device)
# Create a new TextStreamer instance for streaming responses.
streamer = TextStreamer(tokenizer)
generation_kwargs["streamer"] = streamer
print("\nAssistant Response:")
# Generate the text (tokens will stream to stdout via the streamer).
outputs = model.generate(input_ids, **generation_kwargs)
if __name__ == "__main__":
main()
```