Faeze commited on
Commit
6cb583b
·
1 Parent(s): 46523dd

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,697 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - metric
10
+ widget:
11
+ - text: Damn, my condolences to you bro
12
+ - text: No Friday Im booked all day
13
+ - text: Im sorry.
14
+ - text: Hiding in the bush
15
+ - text: '*"The conservative party is a cult." Says the group that bans words and follows
16
+ socialism.??*'
17
+ pipeline_tag: text-classification
18
+ inference: true
19
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
20
+ model-index:
21
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: metric
32
+ value: 0.6947118450822154
33
+ name: Metric
34
+ ---
35
+
36
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 8 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 1 | <ul><li>'@Josh Collins "Ben 0" lmao don\'t forget the facts, Ben has more wins than that'</li><li>'poop siht are the fake news'</li><li>'Thank god these fire chiefs are being heard. People have no idea that they have been trying to meet up with the Prime Minister even before this bushfire crisis trying to alert the public of the devastating impacts of climate change.'</li></ul> |
67
+ | 3 | <ul><li>'Perfectly nailed by Ms.Zainab Sikander. Proud !'</li><li>"You're so sincere Dia about people's life."</li><li>'No words to express my gratitude to this hero.'</li></ul> |
68
+ | 6 | <ul><li>'I accept that.'</li><li>'@Viji same here'</li><li>'Facing same problem'</li></ul> |
69
+ | 5 | <ul><li>"@Rhynni Yeah thanks for asking, Your profile picture actually caught my eyes, Where are you from if you wouldn't mind me asking?"</li><li>'For what what did they do?'</li><li>'Aditya Jagtap who?'</li></ul> |
70
+ | 2 | <ul><li>'Or the save the world were gonna die people .......... No !!! the police joined in'</li><li>'No, I don\'t think I am missing the point at all. When they say "40% of people are obese" that\'s based on BMI, which is an inherently flawed measure by almost any standards. When you say "obesity is estimated to cost whatever," there\'s a lots of conflation of correlation and causation in that calculation. Diseases often correlated with obesity are not always caused by obesity. Either way, my point still stands. Weight should not be considered independently from all other measures of health, it\'s important to consider all the factors.'</li><li>"This is a scam under the guise of socialist action. Climate change is caused mainly by geothermal activity, hence can't be stopped."</li></ul> |
71
+ | 4 | <ul><li>'https://www.gov.uk/guidance/high-consequence-infectious-diseases-hcid#status-of-covid-19 Please somebody explain this to me. It makes absolutely no sense.'</li><li>"Look, you're obviously interested in this, so why don't you go an get a degree in climate science? Im sure the OU do one."</li><li>'All airports need to be stopped'</li></ul> |
72
+ | 0 | <ul><li>'Oh ... Following the same drama.'</li><li>'1st'</li><li>'Breaking news: England just left the EU!'</li></ul> |
73
+ | 7 | <ul><li>'Oh no, I did not mean it that way, it was completely misunderstood what I was saying. Didnt mean to offend you, sorry!'</li><li>'Sorry, really.'</li><li>"It's my fault, I shouldn't have done that, sorryyy!"</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Metric |
79
+ |:--------|:-------|
80
+ | **all** | 0.6947 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-single_label")
99
+ # Run inference
100
+ preds = model("Im sorry.")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:--------|:-----|
132
+ | Word count | 1 | 25.3789 | 1681 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0 | 156 |
137
+ | 1 | 145 |
138
+ | 2 | 52 |
139
+ | 3 | 46 |
140
+ | 4 | 63 |
141
+ | 5 | 35 |
142
+ | 6 | 37 |
143
+ | 7 | 7 |
144
+
145
+ ### Training Hyperparameters
146
+ - batch_size: (16, 16)
147
+ - num_epochs: (3, 3)
148
+ - max_steps: -1
149
+ - sampling_strategy: oversampling
150
+ - num_iterations: 40
151
+ - body_learning_rate: (1.752e-05, 1.752e-05)
152
+ - head_learning_rate: 1.752e-05
153
+ - loss: CosineSimilarityLoss
154
+ - distance_metric: cosine_distance
155
+ - margin: 0.25
156
+ - end_to_end: False
157
+ - use_amp: False
158
+ - warmup_proportion: 0.1
159
+ - seed: 30
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:------:|:----:|:-------------:|:---------------:|
166
+ | 0.0004 | 1 | 0.4094 | - |
167
+ | 0.0185 | 50 | 0.3207 | - |
168
+ | 0.0370 | 100 | 0.2635 | - |
169
+ | 0.0555 | 150 | 0.2347 | - |
170
+ | 0.0739 | 200 | 0.2686 | - |
171
+ | 0.0924 | 250 | 0.2575 | - |
172
+ | 0.1109 | 300 | 0.1983 | - |
173
+ | 0.1294 | 350 | 0.2387 | - |
174
+ | 0.1479 | 400 | 0.2002 | - |
175
+ | 0.1664 | 450 | 0.2112 | - |
176
+ | 0.1848 | 500 | 0.0913 | - |
177
+ | 0.2033 | 550 | 0.1715 | - |
178
+ | 0.2218 | 600 | 0.0686 | - |
179
+ | 0.2403 | 650 | 0.0166 | - |
180
+ | 0.2588 | 700 | 0.0128 | - |
181
+ | 0.2773 | 750 | 0.0102 | - |
182
+ | 0.2957 | 800 | 0.0071 | - |
183
+ | 0.3142 | 850 | 0.0012 | - |
184
+ | 0.3327 | 900 | 0.0016 | - |
185
+ | 0.3512 | 950 | 0.0035 | - |
186
+ | 0.3697 | 1000 | 0.0012 | - |
187
+ | 0.3882 | 1050 | 0.0003 | - |
188
+ | 0.4067 | 1100 | 0.001 | - |
189
+ | 0.4251 | 1150 | 0.0025 | - |
190
+ | 0.4436 | 1200 | 0.001 | - |
191
+ | 0.4621 | 1250 | 0.0006 | - |
192
+ | 0.4806 | 1300 | 0.0006 | - |
193
+ | 0.4991 | 1350 | 0.0004 | - |
194
+ | 0.5176 | 1400 | 0.0012 | - |
195
+ | 0.5360 | 1450 | 0.0051 | - |
196
+ | 0.5545 | 1500 | 0.0009 | - |
197
+ | 0.5730 | 1550 | 0.0003 | - |
198
+ | 0.5915 | 1600 | 0.0004 | - |
199
+ | 0.6100 | 1650 | 0.0009 | - |
200
+ | 0.6285 | 1700 | 0.0002 | - |
201
+ | 0.6470 | 1750 | 0.0003 | - |
202
+ | 0.6654 | 1800 | 0.0005 | - |
203
+ | 0.6839 | 1850 | 0.0003 | - |
204
+ | 0.7024 | 1900 | 0.0003 | - |
205
+ | 0.7209 | 1950 | 0.0005 | - |
206
+ | 0.7394 | 2000 | 0.0004 | - |
207
+ | 0.7579 | 2050 | 0.0008 | - |
208
+ | 0.7763 | 2100 | 0.0009 | - |
209
+ | 0.7948 | 2150 | 0.0002 | - |
210
+ | 0.8133 | 2200 | 0.0002 | - |
211
+ | 0.8318 | 2250 | 0.0002 | - |
212
+ | 0.8503 | 2300 | 0.0008 | - |
213
+ | 0.8688 | 2350 | 0.0002 | - |
214
+ | 0.8872 | 2400 | 0.0002 | - |
215
+ | 0.9057 | 2450 | 0.0003 | - |
216
+ | 0.9242 | 2500 | 0.0013 | - |
217
+ | 0.9427 | 2550 | 0.0003 | - |
218
+ | 0.9612 | 2600 | 0.0002 | - |
219
+ | 0.9797 | 2650 | 0.0002 | - |
220
+ | 0.9982 | 2700 | 0.0003 | - |
221
+ | 1.0166 | 2750 | 0.0002 | - |
222
+ | 1.0351 | 2800 | 0.0008 | - |
223
+ | 1.0536 | 2850 | 0.0001 | - |
224
+ | 1.0721 | 2900 | 0.0004 | - |
225
+ | 1.0906 | 2950 | 0.0001 | - |
226
+ | 1.1091 | 3000 | 0.0001 | - |
227
+ | 1.1275 | 3050 | 0.0002 | - |
228
+ | 1.1460 | 3100 | 0.0002 | - |
229
+ | 1.1645 | 3150 | 0.0002 | - |
230
+ | 1.1830 | 3200 | 0.0001 | - |
231
+ | 1.2015 | 3250 | 0.0001 | - |
232
+ | 1.2200 | 3300 | 0.0001 | - |
233
+ | 1.2384 | 3350 | 0.0041 | - |
234
+ | 1.2569 | 3400 | 0.0002 | - |
235
+ | 1.2754 | 3450 | 0.0001 | - |
236
+ | 1.2939 | 3500 | 0.0001 | - |
237
+ | 1.3124 | 3550 | 0.0002 | - |
238
+ | 1.3309 | 3600 | 0.0 | - |
239
+ | 1.3494 | 3650 | 0.0001 | - |
240
+ | 1.3678 | 3700 | 0.0001 | - |
241
+ | 1.3863 | 3750 | 0.0002 | - |
242
+ | 1.4048 | 3800 | 0.0001 | - |
243
+ | 1.4233 | 3850 | 0.0 | - |
244
+ | 1.4418 | 3900 | 0.0001 | - |
245
+ | 1.4603 | 3950 | 0.0001 | - |
246
+ | 1.4787 | 4000 | 0.0001 | - |
247
+ | 1.4972 | 4050 | 0.0001 | - |
248
+ | 1.5157 | 4100 | 0.0001 | - |
249
+ | 1.5342 | 4150 | 0.0001 | - |
250
+ | 1.5527 | 4200 | 0.0001 | - |
251
+ | 1.5712 | 4250 | 0.0001 | - |
252
+ | 1.5896 | 4300 | 0.0001 | - |
253
+ | 1.6081 | 4350 | 0.0 | - |
254
+ | 1.6266 | 4400 | 0.0001 | - |
255
+ | 1.6451 | 4450 | 0.0019 | - |
256
+ | 1.6636 | 4500 | 0.0001 | - |
257
+ | 1.6821 | 4550 | 0.0003 | - |
258
+ | 1.7006 | 4600 | 0.0002 | - |
259
+ | 1.7190 | 4650 | 0.0001 | - |
260
+ | 1.7375 | 4700 | 0.0001 | - |
261
+ | 1.7560 | 4750 | 0.0002 | - |
262
+ | 1.7745 | 4800 | 0.0001 | - |
263
+ | 1.7930 | 4850 | 0.0001 | - |
264
+ | 1.8115 | 4900 | 0.0003 | - |
265
+ | 1.8299 | 4950 | 0.056 | - |
266
+ | 1.8484 | 5000 | 0.0001 | - |
267
+ | 1.8669 | 5050 | 0.0001 | - |
268
+ | 1.8854 | 5100 | 0.0001 | - |
269
+ | 1.9039 | 5150 | 0.0001 | - |
270
+ | 1.9224 | 5200 | 0.0 | - |
271
+ | 1.9409 | 5250 | 0.0001 | - |
272
+ | 1.9593 | 5300 | 0.0001 | - |
273
+ | 1.9778 | 5350 | 0.0001 | - |
274
+ | 1.9963 | 5400 | 0.0002 | - |
275
+ | 2.0148 | 5450 | 0.0 | - |
276
+ | 2.0333 | 5500 | 0.0001 | - |
277
+ | 2.0518 | 5550 | 0.0 | - |
278
+ | 2.0702 | 5600 | 0.0004 | - |
279
+ | 2.0887 | 5650 | 0.0001 | - |
280
+ | 2.1072 | 5700 | 0.0001 | - |
281
+ | 2.1257 | 5750 | 0.0001 | - |
282
+ | 2.1442 | 5800 | 0.0001 | - |
283
+ | 2.1627 | 5850 | 0.0001 | - |
284
+ | 2.1811 | 5900 | 0.0 | - |
285
+ | 2.1996 | 5950 | 0.0001 | - |
286
+ | 2.2181 | 6000 | 0.0001 | - |
287
+ | 2.2366 | 6050 | 0.0001 | - |
288
+ | 2.2551 | 6100 | 0.0001 | - |
289
+ | 2.2736 | 6150 | 0.0001 | - |
290
+ | 2.2921 | 6200 | 0.0 | - |
291
+ | 2.3105 | 6250 | 0.0001 | - |
292
+ | 2.3290 | 6300 | 0.0 | - |
293
+ | 2.3475 | 6350 | 0.0001 | - |
294
+ | 2.3660 | 6400 | 0.0001 | - |
295
+ | 2.3845 | 6450 | 0.0001 | - |
296
+ | 2.4030 | 6500 | 0.0 | - |
297
+ | 2.4214 | 6550 | 0.0001 | - |
298
+ | 2.4399 | 6600 | 0.0001 | - |
299
+ | 2.4584 | 6650 | 0.0 | - |
300
+ | 2.4769 | 6700 | 0.0 | - |
301
+ | 2.4954 | 6750 | 0.0002 | - |
302
+ | 2.5139 | 6800 | 0.0001 | - |
303
+ | 2.5323 | 6850 | 0.0001 | - |
304
+ | 2.5508 | 6900 | 0.0001 | - |
305
+ | 2.5693 | 6950 | 0.0001 | - |
306
+ | 2.5878 | 7000 | 0.0 | - |
307
+ | 2.6063 | 7050 | 0.0001 | - |
308
+ | 2.6248 | 7100 | 0.0001 | - |
309
+ | 2.6433 | 7150 | 0.0001 | - |
310
+ | 2.6617 | 7200 | 0.0001 | - |
311
+ | 2.6802 | 7250 | 0.0001 | - |
312
+ | 2.6987 | 7300 | 0.0003 | - |
313
+ | 2.7172 | 7350 | 0.0001 | - |
314
+ | 2.7357 | 7400 | 0.0 | - |
315
+ | 2.7542 | 7450 | 0.0 | - |
316
+ | 2.7726 | 7500 | 0.0 | - |
317
+ | 2.7911 | 7550 | 0.0001 | - |
318
+ | 2.8096 | 7600 | 0.0001 | - |
319
+ | 2.8281 | 7650 | 0.0001 | - |
320
+ | 2.8466 | 7700 | 0.0001 | - |
321
+ | 2.8651 | 7750 | 0.0001 | - |
322
+ | 2.8835 | 7800 | 0.0001 | - |
323
+ | 2.9020 | 7850 | 0.0001 | - |
324
+ | 2.9205 | 7900 | 0.0002 | - |
325
+ | 2.9390 | 7950 | 0.0001 | - |
326
+ | 2.9575 | 8000 | 0.0 | - |
327
+ | 2.9760 | 8050 | 0.0 | - |
328
+ | 2.9945 | 8100 | 0.0001 | - |
329
+ | 0.0004 | 1 | 0.0001 | - |
330
+ | 0.0185 | 50 | 0.0001 | - |
331
+ | 0.0370 | 100 | 0.0001 | - |
332
+ | 0.0555 | 150 | 0.0001 | - |
333
+ | 0.0739 | 200 | 0.0001 | - |
334
+ | 0.0924 | 250 | 0.0001 | - |
335
+ | 0.1109 | 300 | 0.0001 | - |
336
+ | 0.1294 | 350 | 0.0001 | - |
337
+ | 0.1479 | 400 | 0.0001 | - |
338
+ | 0.1664 | 450 | 0.0005 | - |
339
+ | 0.1848 | 500 | 0.0007 | - |
340
+ | 0.2033 | 550 | 0.0003 | - |
341
+ | 0.2218 | 600 | 0.0003 | - |
342
+ | 0.2403 | 650 | 0.0 | - |
343
+ | 0.2588 | 700 | 0.0001 | - |
344
+ | 0.2773 | 750 | 0.0001 | - |
345
+ | 0.2957 | 800 | 0.0002 | - |
346
+ | 0.3142 | 850 | 0.0 | - |
347
+ | 0.3327 | 900 | 0.0001 | - |
348
+ | 0.3512 | 950 | 0.0044 | - |
349
+ | 0.3697 | 1000 | 0.0001 | - |
350
+ | 0.3882 | 1050 | 0.0004 | - |
351
+ | 0.4067 | 1100 | 0.0006 | - |
352
+ | 0.4251 | 1150 | 0.0012 | - |
353
+ | 0.4436 | 1200 | 0.0002 | - |
354
+ | 0.4621 | 1250 | 0.0001 | - |
355
+ | 0.4806 | 1300 | 0.0 | - |
356
+ | 0.4991 | 1350 | 0.0001 | - |
357
+ | 0.5176 | 1400 | 0.0003 | - |
358
+ | 0.5360 | 1450 | 0.0001 | - |
359
+ | 0.5545 | 1500 | 0.0001 | - |
360
+ | 0.5730 | 1550 | 0.0002 | - |
361
+ | 0.5915 | 1600 | 0.0001 | - |
362
+ | 0.6100 | 1650 | 0.0002 | - |
363
+ | 0.6285 | 1700 | 0.0 | - |
364
+ | 0.6470 | 1750 | 0.0001 | - |
365
+ | 0.6654 | 1800 | 0.0001 | - |
366
+ | 0.6839 | 1850 | 0.0001 | - |
367
+ | 0.7024 | 1900 | 0.0001 | - |
368
+ | 0.7209 | 1950 | 0.0017 | - |
369
+ | 0.7394 | 2000 | 0.0001 | - |
370
+ | 0.7579 | 2050 | 0.0002 | - |
371
+ | 0.7763 | 2100 | 0.0002 | - |
372
+ | 0.7948 | 2150 | 0.0003 | - |
373
+ | 0.8133 | 2200 | 0.0001 | - |
374
+ | 0.8318 | 2250 | 0.0001 | - |
375
+ | 0.8503 | 2300 | 0.0002 | - |
376
+ | 0.8688 | 2350 | 0.0 | - |
377
+ | 0.8872 | 2400 | 0.0001 | - |
378
+ | 0.9057 | 2450 | 0.0001 | - |
379
+ | 0.9242 | 2500 | 0.0002 | - |
380
+ | 0.9427 | 2550 | 0.0001 | - |
381
+ | 0.9612 | 2600 | 0.0 | - |
382
+ | 0.9797 | 2650 | 0.0 | - |
383
+ | 0.9982 | 2700 | 0.0001 | - |
384
+ | 1.0166 | 2750 | 0.0001 | - |
385
+ | 1.0351 | 2800 | 0.0001 | - |
386
+ | 1.0536 | 2850 | 0.0 | - |
387
+ | 1.0721 | 2900 | 0.0 | - |
388
+ | 1.0906 | 2950 | 0.0001 | - |
389
+ | 1.1091 | 3000 | 0.0 | - |
390
+ | 1.1275 | 3050 | 0.0001 | - |
391
+ | 1.1460 | 3100 | 0.0001 | - |
392
+ | 1.1645 | 3150 | 0.0 | - |
393
+ | 1.1830 | 3200 | 0.0 | - |
394
+ | 1.2015 | 3250 | 0.0 | - |
395
+ | 1.2200 | 3300 | 0.0 | - |
396
+ | 1.2384 | 3350 | 0.0002 | - |
397
+ | 1.2569 | 3400 | 0.0001 | - |
398
+ | 1.2754 | 3450 | 0.0 | - |
399
+ | 1.2939 | 3500 | 0.0001 | - |
400
+ | 1.3124 | 3550 | 0.0001 | - |
401
+ | 1.3309 | 3600 | 0.0 | - |
402
+ | 1.3494 | 3650 | 0.0 | - |
403
+ | 1.3678 | 3700 | 0.0 | - |
404
+ | 1.3863 | 3750 | 0.0001 | - |
405
+ | 1.4048 | 3800 | 0.0 | - |
406
+ | 1.4233 | 3850 | 0.0 | - |
407
+ | 1.4418 | 3900 | 0.0 | - |
408
+ | 1.4603 | 3950 | 0.0 | - |
409
+ | 1.4787 | 4000 | 0.0001 | - |
410
+ | 1.4972 | 4050 | 0.0 | - |
411
+ | 1.5157 | 4100 | 0.0 | - |
412
+ | 1.5342 | 4150 | 0.0 | - |
413
+ | 1.5527 | 4200 | 0.0001 | - |
414
+ | 1.5712 | 4250 | 0.0001 | - |
415
+ | 1.5896 | 4300 | 0.0 | - |
416
+ | 1.6081 | 4350 | 0.0 | - |
417
+ | 1.6266 | 4400 | 0.0001 | - |
418
+ | 1.6451 | 4450 | 0.0 | - |
419
+ | 1.6636 | 4500 | 0.0001 | - |
420
+ | 1.6821 | 4550 | 0.0001 | - |
421
+ | 1.7006 | 4600 | 0.0001 | - |
422
+ | 1.7190 | 4650 | 0.0 | - |
423
+ | 1.7375 | 4700 | 0.0 | - |
424
+ | 1.7560 | 4750 | 0.0 | - |
425
+ | 1.7745 | 4800 | 0.0 | - |
426
+ | 1.7930 | 4850 | 0.0001 | - |
427
+ | 1.8115 | 4900 | 0.0001 | - |
428
+ | 1.8299 | 4950 | 0.0 | - |
429
+ | 1.8484 | 5000 | 0.0001 | - |
430
+ | 1.8669 | 5050 | 0.0 | - |
431
+ | 1.8854 | 5100 | 0.0 | - |
432
+ | 1.9039 | 5150 | 0.0 | - |
433
+ | 1.9224 | 5200 | 0.0 | - |
434
+ | 1.9409 | 5250 | 0.0 | - |
435
+ | 1.9593 | 5300 | 0.0 | - |
436
+ | 1.9778 | 5350 | 0.0 | - |
437
+ | 1.9963 | 5400 | 0.0 | - |
438
+ | 2.0148 | 5450 | 0.0 | - |
439
+ | 2.0333 | 5500 | 0.0 | - |
440
+ | 2.0518 | 5550 | 0.0 | - |
441
+ | 2.0702 | 5600 | 0.0001 | - |
442
+ | 2.0887 | 5650 | 0.0 | - |
443
+ | 2.1072 | 5700 | 0.0 | - |
444
+ | 2.1257 | 5750 | 0.0 | - |
445
+ | 2.1442 | 5800 | 0.0 | - |
446
+ | 2.1627 | 5850 | 0.0001 | - |
447
+ | 2.1811 | 5900 | 0.0 | - |
448
+ | 2.1996 | 5950 | 0.0 | - |
449
+ | 2.2181 | 6000 | 0.0 | - |
450
+ | 2.2366 | 6050 | 0.0 | - |
451
+ | 2.2551 | 6100 | 0.0 | - |
452
+ | 2.2736 | 6150 | 0.0001 | - |
453
+ | 2.2921 | 6200 | 0.0 | - |
454
+ | 2.3105 | 6250 | 0.0 | - |
455
+ | 2.3290 | 6300 | 0.0 | - |
456
+ | 2.3475 | 6350 | 0.0 | - |
457
+ | 2.3660 | 6400 | 0.0 | - |
458
+ | 2.3845 | 6450 | 0.0 | - |
459
+ | 2.4030 | 6500 | 0.0 | - |
460
+ | 2.4214 | 6550 | 0.0 | - |
461
+ | 2.4399 | 6600 | 0.0 | - |
462
+ | 2.4584 | 6650 | 0.0 | - |
463
+ | 2.4769 | 6700 | 0.0 | - |
464
+ | 2.4954 | 6750 | 0.0001 | - |
465
+ | 2.5139 | 6800 | 0.0001 | - |
466
+ | 2.5323 | 6850 | 0.0 | - |
467
+ | 2.5508 | 6900 | 0.0 | - |
468
+ | 2.5693 | 6950 | 0.0 | - |
469
+ | 2.5878 | 7000 | 0.0 | - |
470
+ | 2.6063 | 7050 | 0.0 | - |
471
+ | 2.6248 | 7100 | 0.0 | - |
472
+ | 2.6433 | 7150 | 0.0001 | - |
473
+ | 2.6617 | 7200 | 0.0 | - |
474
+ | 2.6802 | 7250 | 0.0 | - |
475
+ | 2.6987 | 7300 | 0.0001 | - |
476
+ | 2.7172 | 7350 | 0.0 | - |
477
+ | 2.7357 | 7400 | 0.0 | - |
478
+ | 2.7542 | 7450 | 0.0 | - |
479
+ | 2.7726 | 7500 | 0.0 | - |
480
+ | 2.7911 | 7550 | 0.0 | - |
481
+ | 2.8096 | 7600 | 0.0 | - |
482
+ | 2.8281 | 7650 | 0.0 | - |
483
+ | 2.8466 | 7700 | 0.0001 | - |
484
+ | 2.8651 | 7750 | 0.0 | - |
485
+ | 2.8835 | 7800 | 0.0001 | - |
486
+ | 2.9020 | 7850 | 0.0 | - |
487
+ | 2.9205 | 7900 | 0.0001 | - |
488
+ | 2.9390 | 7950 | 0.0001 | - |
489
+ | 2.9575 | 8000 | 0.0 | - |
490
+ | 2.9760 | 8050 | 0.0 | - |
491
+ | 2.9945 | 8100 | 0.0 | - |
492
+ | 0.0004 | 1 | 0.0 | - |
493
+ | 0.0185 | 50 | 0.0 | - |
494
+ | 0.0370 | 100 | 0.0 | - |
495
+ | 0.0555 | 150 | 0.0 | - |
496
+ | 0.0739 | 200 | 0.0 | - |
497
+ | 0.0924 | 250 | 0.0 | - |
498
+ | 0.1109 | 300 | 0.0 | - |
499
+ | 0.1294 | 350 | 0.0005 | - |
500
+ | 0.1479 | 400 | 0.0002 | - |
501
+ | 0.1664 | 450 | 0.0001 | - |
502
+ | 0.1848 | 500 | 0.0009 | - |
503
+ | 0.2033 | 550 | 0.1068 | - |
504
+ | 0.2218 | 600 | 0.0 | - |
505
+ | 0.2403 | 650 | 0.0 | - |
506
+ | 0.2588 | 700 | 0.0 | - |
507
+ | 0.2773 | 750 | 0.0374 | - |
508
+ | 0.2957 | 800 | 0.0001 | - |
509
+ | 0.3142 | 850 | 0.0 | - |
510
+ | 0.3327 | 900 | 0.0 | - |
511
+ | 0.3512 | 950 | 0.0 | - |
512
+ | 0.3697 | 1000 | 0.0001 | - |
513
+ | 0.3882 | 1050 | 0.0 | - |
514
+ | 0.4067 | 1100 | 0.0001 | - |
515
+ | 0.4251 | 1150 | 0.0002 | - |
516
+ | 0.4436 | 1200 | 0.0001 | - |
517
+ | 0.4621 | 1250 | 0.0012 | - |
518
+ | 0.4806 | 1300 | 0.0 | - |
519
+ | 0.4991 | 1350 | 0.0001 | - |
520
+ | 0.5176 | 1400 | 0.0001 | - |
521
+ | 0.5360 | 1450 | 0.0 | - |
522
+ | 0.5545 | 1500 | 0.0001 | - |
523
+ | 0.5730 | 1550 | 0.0 | - |
524
+ | 0.5915 | 1600 | 0.0267 | - |
525
+ | 0.6100 | 1650 | 0.0001 | - |
526
+ | 0.6285 | 1700 | 0.0 | - |
527
+ | 0.6470 | 1750 | 0.0 | - |
528
+ | 0.6654 | 1800 | 0.0 | - |
529
+ | 0.6839 | 1850 | 0.0 | - |
530
+ | 0.7024 | 1900 | 0.0 | - |
531
+ | 0.7209 | 1950 | 0.0 | - |
532
+ | 0.7394 | 2000 | 0.0 | - |
533
+ | 0.7579 | 2050 | 0.0001 | - |
534
+ | 0.7763 | 2100 | 0.0 | - |
535
+ | 0.7948 | 2150 | 0.0001 | - |
536
+ | 0.8133 | 2200 | 0.0001 | - |
537
+ | 0.8318 | 2250 | 0.0 | - |
538
+ | 0.8503 | 2300 | 0.0001 | - |
539
+ | 0.8688 | 2350 | 0.1116 | - |
540
+ | 0.8872 | 2400 | 0.0042 | - |
541
+ | 0.9057 | 2450 | 0.0001 | - |
542
+ | 0.9242 | 2500 | 0.0006 | - |
543
+ | 0.9427 | 2550 | 0.0 | - |
544
+ | 0.9612 | 2600 | 0.0615 | - |
545
+ | 0.9797 | 2650 | 0.0002 | - |
546
+ | 0.9982 | 2700 | 0.0 | - |
547
+ | 1.0166 | 2750 | 0.0003 | - |
548
+ | 1.0351 | 2800 | 0.0001 | - |
549
+ | 1.0536 | 2850 | 0.0 | - |
550
+ | 1.0721 | 2900 | 0.0 | - |
551
+ | 1.0906 | 2950 | 0.0 | - |
552
+ | 1.1091 | 3000 | 0.0 | - |
553
+ | 1.1275 | 3050 | 0.0001 | - |
554
+ | 1.1460 | 3100 | 0.0 | - |
555
+ | 1.1645 | 3150 | 0.0 | - |
556
+ | 1.1830 | 3200 | 0.0 | - |
557
+ | 1.2015 | 3250 | 0.0 | - |
558
+ | 1.2200 | 3300 | 0.0 | - |
559
+ | 1.2384 | 3350 | 0.0 | - |
560
+ | 1.2569 | 3400 | 0.0 | - |
561
+ | 1.2754 | 3450 | 0.0 | - |
562
+ | 1.2939 | 3500 | 0.0 | - |
563
+ | 1.3124 | 3550 | 0.0 | - |
564
+ | 1.3309 | 3600 | 0.0 | - |
565
+ | 1.3494 | 3650 | 0.0 | - |
566
+ | 1.3678 | 3700 | 0.0 | - |
567
+ | 1.3863 | 3750 | 0.0 | - |
568
+ | 1.4048 | 3800 | 0.0003 | - |
569
+ | 1.4233 | 3850 | 0.0 | - |
570
+ | 1.4418 | 3900 | 0.0001 | - |
571
+ | 1.4603 | 3950 | 0.0 | - |
572
+ | 1.4787 | 4000 | 0.0001 | - |
573
+ | 1.4972 | 4050 | 0.0 | - |
574
+ | 1.5157 | 4100 | 0.0 | - |
575
+ | 1.5342 | 4150 | 0.0 | - |
576
+ | 1.5527 | 4200 | 0.0 | - |
577
+ | 1.5712 | 4250 | 0.0 | - |
578
+ | 1.5896 | 4300 | 0.0 | - |
579
+ | 1.6081 | 4350 | 0.0 | - |
580
+ | 1.6266 | 4400 | 0.0 | - |
581
+ | 1.6451 | 4450 | 0.0 | - |
582
+ | 1.6636 | 4500 | 0.0 | - |
583
+ | 1.6821 | 4550 | 0.0001 | - |
584
+ | 1.7006 | 4600 | 0.0 | - |
585
+ | 1.7190 | 4650 | 0.0 | - |
586
+ | 1.7375 | 4700 | 0.0 | - |
587
+ | 1.7560 | 4750 | 0.0 | - |
588
+ | 1.7745 | 4800 | 0.0 | - |
589
+ | 1.7930 | 4850 | 0.0 | - |
590
+ | 1.8115 | 4900 | 0.0 | - |
591
+ | 1.8299 | 4950 | 0.0 | - |
592
+ | 1.8484 | 5000 | 0.0 | - |
593
+ | 1.8669 | 5050 | 0.0 | - |
594
+ | 1.8854 | 5100 | 0.0 | - |
595
+ | 1.9039 | 5150 | 0.0 | - |
596
+ | 1.9224 | 5200 | 0.0 | - |
597
+ | 1.9409 | 5250 | 0.0 | - |
598
+ | 1.9593 | 5300 | 0.0 | - |
599
+ | 1.9778 | 5350 | 0.0 | - |
600
+ | 1.9963 | 5400 | 0.0 | - |
601
+ | 2.0148 | 5450 | 0.0 | - |
602
+ | 2.0333 | 5500 | 0.0 | - |
603
+ | 2.0518 | 5550 | 0.0 | - |
604
+ | 2.0702 | 5600 | 0.0001 | - |
605
+ | 2.0887 | 5650 | 0.0 | - |
606
+ | 2.1072 | 5700 | 0.0 | - |
607
+ | 2.1257 | 5750 | 0.0 | - |
608
+ | 2.1442 | 5800 | 0.0001 | - |
609
+ | 2.1627 | 5850 | 0.0 | - |
610
+ | 2.1811 | 5900 | 0.0 | - |
611
+ | 2.1996 | 5950 | 0.0 | - |
612
+ | 2.2181 | 6000 | 0.0 | - |
613
+ | 2.2366 | 6050 | 0.0 | - |
614
+ | 2.2551 | 6100 | 0.0 | - |
615
+ | 2.2736 | 6150 | 0.0 | - |
616
+ | 2.2921 | 6200 | 0.0 | - |
617
+ | 2.3105 | 6250 | 0.0 | - |
618
+ | 2.3290 | 6300 | 0.0 | - |
619
+ | 2.3475 | 6350 | 0.0 | - |
620
+ | 2.3660 | 6400 | 0.0 | - |
621
+ | 2.3845 | 6450 | 0.0 | - |
622
+ | 2.4030 | 6500 | 0.0 | - |
623
+ | 2.4214 | 6550 | 0.0 | - |
624
+ | 2.4399 | 6600 | 0.0 | - |
625
+ | 2.4584 | 6650 | 0.0 | - |
626
+ | 2.4769 | 6700 | 0.0 | - |
627
+ | 2.4954 | 6750 | 0.0 | - |
628
+ | 2.5139 | 6800 | 0.0001 | - |
629
+ | 2.5323 | 6850 | 0.0 | - |
630
+ | 2.5508 | 6900 | 0.0 | - |
631
+ | 2.5693 | 6950 | 0.0 | - |
632
+ | 2.5878 | 7000 | 0.0 | - |
633
+ | 2.6063 | 7050 | 0.0 | - |
634
+ | 2.6248 | 7100 | 0.0 | - |
635
+ | 2.6433 | 7150 | 0.0 | - |
636
+ | 2.6617 | 7200 | 0.0 | - |
637
+ | 2.6802 | 7250 | 0.0 | - |
638
+ | 2.6987 | 7300 | 0.0 | - |
639
+ | 2.7172 | 7350 | 0.0 | - |
640
+ | 2.7357 | 7400 | 0.0 | - |
641
+ | 2.7542 | 7450 | 0.0 | - |
642
+ | 2.7726 | 7500 | 0.0 | - |
643
+ | 2.7911 | 7550 | 0.0 | - |
644
+ | 2.8096 | 7600 | 0.0 | - |
645
+ | 2.8281 | 7650 | 0.0 | - |
646
+ | 2.8466 | 7700 | 0.0 | - |
647
+ | 2.8651 | 7750 | 0.0 | - |
648
+ | 2.8835 | 7800 | 0.0 | - |
649
+ | 2.9020 | 7850 | 0.0 | - |
650
+ | 2.9205 | 7900 | 0.0 | - |
651
+ | 2.9390 | 7950 | 0.0 | - |
652
+ | 2.9575 | 8000 | 0.0 | - |
653
+ | 2.9760 | 8050 | 0.0 | - |
654
+ | 2.9945 | 8100 | 0.0 | - |
655
+
656
+ ### Framework Versions
657
+ - Python: 3.9.16
658
+ - SetFit: 1.0.1
659
+ - Sentence Transformers: 2.2.2
660
+ - Transformers: 4.35.0
661
+ - PyTorch: 2.1.0+cu121
662
+ - Datasets: 2.14.6
663
+ - Tokenizers: 0.14.1
664
+
665
+ ## Citation
666
+
667
+ ### BibTeX
668
+ ```bibtex
669
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
670
+ doi = {10.48550/ARXIV.2209.11055},
671
+ url = {https://arxiv.org/abs/2209.11055},
672
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
673
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
674
+ title = {Efficient Few-Shot Learning Without Prompts},
675
+ publisher = {arXiv},
676
+ year = {2022},
677
+ copyright = {Creative Commons Attribution 4.0 International}
678
+ }
679
+ ```
680
+
681
+ <!--
682
+ ## Glossary
683
+
684
+ *Clearly define terms in order to be accessible across audiences.*
685
+ -->
686
+
687
+ <!--
688
+ ## Model Card Authors
689
+
690
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
691
+ -->
692
+
693
+ <!--
694
+ ## Model Card Contact
695
+
696
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
697
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/users/ghorbaf2/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8455b7bace7049ea54a093623a0c6db7fb883467f14ef55db584620b4364148
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:545adf9b5e75b46e8962004c64811d609fc595ce9d268518986a744ada871006
3
+ size 50119
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff