Faeze commited on
Commit
0b8b85e
·
verified ·
1 Parent(s): 779c281

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -307
README.md CHANGED
@@ -6,19 +6,22 @@ tags:
6
  - text-classification
7
  - generated_from_setfit_trainer
8
  metrics:
9
- - metric
 
10
  widget:
11
- - text: A combined 20 million people per year die of smoking and hunger, so authorities
12
- can't seem to feed people and they allow you to buy cigarettes but we are facing
13
- another lockdown for a virus that has a 99.5% survival rate!!! THINK PEOPLE. LOOK
14
- AT IT LOGICALLY WITH YOUR OWN EYES.
15
- - text: Scientists do not agree on the consequences of climate change, nor is there
16
- any consensus on that subject. The predictions on that from are just ascientific
17
- speculation. Bring on the warming."
18
- - text: If Tam is our "top doctor"....I am going back to leaches and voodoo...just
 
 
 
19
  as much science in that as the crap she spouts
20
- - text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions\
21
- \ and just a good actor."
22
  - text: my dad had huge ones..so they may be real..
23
  pipeline_tag: text-classification
24
  inference: false
@@ -37,318 +40,69 @@ model-index:
37
  - type: metric
38
  value: 0.688144336139226
39
  name: Metric
 
 
 
40
  ---
41
 
42
- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
43
 
44
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.
45
 
46
- The model has been trained using an efficient few-shot learning technique that involves:
47
 
48
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
49
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
50
-
51
- ## Model Details
52
-
53
- ### Model Description
54
- - **Model Type:** SetFit
55
- - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
56
- - **Classification head:** a ClassifierChain instance
57
- - **Maximum Sequence Length:** 512 tokens
58
- <!-- - **Number of Classes:** Unknown -->
59
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
60
- <!-- - **Language:** Unknown -->
61
- <!-- - **License:** Unknown -->
62
-
63
- ### Model Sources
64
-
65
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
66
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
67
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
68
-
69
- ## Evaluation
70
-
71
- ### Metrics
72
- | Label | Metric |
73
- |:--------|:-------|
74
- | **all** | 0.6881 |
75
-
76
- ## Uses
77
-
78
- ### Direct Use for Inference
79
-
80
- First install the SetFit library:
81
-
82
- ```bash
83
- pip install setfit
84
- ```
85
-
86
- Then you can load this model and run inference.
87
-
88
- ```python
89
- from setfit import SetFitModel
90
-
91
- # Download from the 🤗 Hub
92
- model = SetFitModel.from_pretrained("CrisisNarratives/setfit-9classes-multi_label")
93
- # Run inference
94
- preds = model("my dad had huge ones..so they may be real..")
95
- ```
96
-
97
- <!--
98
- ### Downstream Use
99
-
100
- *List how someone could finetune this model on their own dataset.*
101
- -->
102
-
103
- <!--
104
- ### Out-of-Scope Use
105
-
106
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
- -->
108
-
109
- <!--
110
- ## Bias, Risks and Limitations
111
-
112
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
- -->
114
-
115
- <!--
116
- ### Recommendations
117
 
118
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
- -->
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
- ## Training Details
122
 
123
- ### Training Set Metrics
124
- | Training set | Min | Median | Max |
125
- |:-------------|:----|:--------|:-----|
126
- | Word count | 1 | 25.8891 | 1681 |
127
 
128
- ### Training Hyperparameters
129
- - batch_size: (16, 16)
130
- - num_epochs: (3, 3)
131
- - max_steps: -1
132
- - sampling_strategy: oversampling
133
- - num_iterations: 40
134
- - body_learning_rate: (1.752e-05, 1.752e-05)
135
- - head_learning_rate: 1.752e-05
136
- - loss: CosineSimilarityLoss
137
- - distance_metric: cosine_distance
138
- - margin: 0.25
139
- - end_to_end: False
140
- - use_amp: False
141
- - warmup_proportion: 0.1
142
- - seed: 30
143
- - eval_max_steps: -1
144
- - load_best_model_at_end: False
145
 
146
- ### Training Results
147
- | Epoch | Step | Training Loss | Validation Loss |
148
- |:------:|:----:|:-------------:|:---------------:|
149
- | 0.0004 | 1 | 0.3395 | - |
150
- | 0.0185 | 50 | 0.3628 | - |
151
- | 0.0370 | 100 | 0.2538 | - |
152
- | 0.0555 | 150 | 0.2044 | - |
153
- | 0.0739 | 200 | 0.1831 | - |
154
- | 0.0924 | 250 | 0.2218 | - |
155
- | 0.1109 | 300 | 0.2014 | - |
156
- | 0.1294 | 350 | 0.2405 | - |
157
- | 0.1479 | 400 | 0.1238 | - |
158
- | 0.1664 | 450 | 0.1658 | - |
159
- | 0.1848 | 500 | 0.1974 | - |
160
- | 0.2033 | 550 | 0.1565 | - |
161
- | 0.2218 | 600 | 0.1131 | - |
162
- | 0.2403 | 650 | 0.0994 | - |
163
- | 0.2588 | 700 | 0.0743 | - |
164
- | 0.2773 | 750 | 0.0259 | - |
165
- | 0.2957 | 800 | 0.1852 | - |
166
- | 0.3142 | 850 | 0.1896 | - |
167
- | 0.3327 | 900 | 0.1102 | - |
168
- | 0.3512 | 950 | 0.0951 | - |
169
- | 0.3697 | 1000 | 0.0619 | - |
170
- | 0.3882 | 1050 | 0.0227 | - |
171
- | 0.4067 | 1100 | 0.0986 | - |
172
- | 0.4251 | 1150 | 0.0375 | - |
173
- | 0.4436 | 1200 | 0.1151 | - |
174
- | 0.4621 | 1250 | 0.1128 | - |
175
- | 0.4806 | 1300 | 0.0334 | - |
176
- | 0.4991 | 1350 | 0.1012 | - |
177
- | 0.5176 | 1400 | 0.0895 | - |
178
- | 0.5360 | 1450 | 0.072 | - |
179
- | 0.5545 | 1500 | 0.0619 | - |
180
- | 0.5730 | 1550 | 0.0852 | - |
181
- | 0.5915 | 1600 | 0.0611 | - |
182
- | 0.6100 | 1650 | 0.0679 | - |
183
- | 0.6285 | 1700 | 0.0238 | - |
184
- | 0.6470 | 1750 | 0.1776 | - |
185
- | 0.6654 | 1800 | 0.081 | - |
186
- | 0.6839 | 1850 | 0.1059 | - |
187
- | 0.7024 | 1900 | 0.045 | - |
188
- | 0.7209 | 1950 | 0.0664 | - |
189
- | 0.7394 | 2000 | 0.0666 | - |
190
- | 0.7579 | 2050 | 0.0714 | - |
191
- | 0.7763 | 2100 | 0.0312 | - |
192
- | 0.7948 | 2150 | 0.0461 | - |
193
- | 0.8133 | 2200 | 0.0946 | - |
194
- | 0.8318 | 2250 | 0.047 | - |
195
- | 0.8503 | 2300 | 0.0906 | - |
196
- | 0.8688 | 2350 | 0.0186 | - |
197
- | 0.8872 | 2400 | 0.0937 | - |
198
- | 0.9057 | 2450 | 0.1674 | - |
199
- | 0.9242 | 2500 | 0.0311 | - |
200
- | 0.9427 | 2550 | 0.0884 | - |
201
- | 0.9612 | 2600 | 0.0787 | - |
202
- | 0.9797 | 2650 | 0.192 | - |
203
- | 0.9982 | 2700 | 0.0689 | - |
204
- | 1.0166 | 2750 | 0.0945 | - |
205
- | 1.0351 | 2800 | 0.066 | - |
206
- | 1.0536 | 2850 | 0.0592 | - |
207
- | 1.0721 | 2900 | 0.068 | - |
208
- | 1.0906 | 2950 | 0.0619 | - |
209
- | 1.1091 | 3000 | 0.0329 | - |
210
- | 1.1275 | 3050 | 0.0986 | - |
211
- | 1.1460 | 3100 | 0.0468 | - |
212
- | 1.1645 | 3150 | 0.0717 | - |
213
- | 1.1830 | 3200 | 0.0721 | - |
214
- | 1.2015 | 3250 | 0.0345 | - |
215
- | 1.2200 | 3300 | 0.0317 | - |
216
- | 1.2384 | 3350 | 0.0476 | - |
217
- | 1.2569 | 3400 | 0.122 | - |
218
- | 1.2754 | 3450 | 0.0576 | - |
219
- | 1.2939 | 3500 | 0.0375 | - |
220
- | 1.3124 | 3550 | 0.1074 | - |
221
- | 1.3309 | 3600 | 0.113 | - |
222
- | 1.3494 | 3650 | 0.0564 | - |
223
- | 1.3678 | 3700 | 0.0437 | - |
224
- | 1.3863 | 3750 | 0.0623 | - |
225
- | 1.4048 | 3800 | 0.0213 | - |
226
- | 1.4233 | 3850 | 0.0629 | - |
227
- | 1.4418 | 3900 | 0.059 | - |
228
- | 1.4603 | 3950 | 0.0807 | - |
229
- | 1.4787 | 4000 | 0.0946 | - |
230
- | 1.4972 | 4050 | 0.0381 | - |
231
- | 1.5157 | 4100 | 0.0451 | - |
232
- | 1.5342 | 4150 | 0.0742 | - |
233
- | 1.5527 | 4200 | 0.0899 | - |
234
- | 1.5712 | 4250 | 0.0722 | - |
235
- | 1.5896 | 4300 | 0.1022 | - |
236
- | 1.6081 | 4350 | 0.0446 | - |
237
- | 1.6266 | 4400 | 0.022 | - |
238
- | 1.6451 | 4450 | 0.0586 | - |
239
- | 1.6636 | 4500 | 0.0585 | - |
240
- | 1.6821 | 4550 | 0.0409 | - |
241
- | 1.7006 | 4600 | 0.0253 | - |
242
- | 1.7190 | 4650 | 0.0363 | - |
243
- | 1.7375 | 4700 | 0.0492 | - |
244
- | 1.7560 | 4750 | 0.0154 | - |
245
- | 1.7745 | 4800 | 0.0427 | - |
246
- | 1.7930 | 4850 | 0.0284 | - |
247
- | 1.8115 | 4900 | 0.022 | - |
248
- | 1.8299 | 4950 | 0.0335 | - |
249
- | 1.8484 | 5000 | 0.0222 | - |
250
- | 1.8669 | 5050 | 0.0291 | - |
251
- | 1.8854 | 5100 | 0.0824 | - |
252
- | 1.9039 | 5150 | 0.0563 | - |
253
- | 1.9224 | 5200 | 0.0355 | - |
254
- | 1.9409 | 5250 | 0.064 | - |
255
- | 1.9593 | 5300 | 0.0596 | - |
256
- | 1.9778 | 5350 | 0.0789 | - |
257
- | 1.9963 | 5400 | 0.0901 | - |
258
- | 2.0148 | 5450 | 0.0388 | - |
259
- | 2.0333 | 5500 | 0.0738 | - |
260
- | 2.0518 | 5550 | 0.0712 | - |
261
- | 2.0702 | 5600 | 0.0825 | - |
262
- | 2.0887 | 5650 | 0.0406 | - |
263
- | 2.1072 | 5700 | 0.0623 | - |
264
- | 2.1257 | 5750 | 0.0423 | - |
265
- | 2.1442 | 5800 | 0.0566 | - |
266
- | 2.1627 | 5850 | 0.0745 | - |
267
- | 2.1811 | 5900 | 0.0271 | - |
268
- | 2.1996 | 5950 | 0.0257 | - |
269
- | 2.2181 | 6000 | 0.0347 | - |
270
- | 2.2366 | 6050 | 0.0291 | - |
271
- | 2.2551 | 6100 | 0.0401 | - |
272
- | 2.2736 | 6150 | 0.0222 | - |
273
- | 2.2921 | 6200 | 0.0217 | - |
274
- | 2.3105 | 6250 | 0.0589 | - |
275
- | 2.3290 | 6300 | 0.0685 | - |
276
- | 2.3475 | 6350 | 0.1191 | - |
277
- | 2.3660 | 6400 | 0.0626 | - |
278
- | 2.3845 | 6450 | 0.0615 | - |
279
- | 2.4030 | 6500 | 0.0327 | - |
280
- | 2.4214 | 6550 | 0.0431 | - |
281
- | 2.4399 | 6600 | 0.1037 | - |
282
- | 2.4584 | 6650 | 0.0318 | - |
283
- | 2.4769 | 6700 | 0.062 | - |
284
- | 2.4954 | 6750 | 0.0183 | - |
285
- | 2.5139 | 6800 | 0.0568 | - |
286
- | 2.5323 | 6850 | 0.0581 | - |
287
- | 2.5508 | 6900 | 0.0363 | - |
288
- | 2.5693 | 6950 | 0.0413 | - |
289
- | 2.5878 | 7000 | 0.076 | - |
290
- | 2.6063 | 7050 | 0.046 | - |
291
- | 2.6248 | 7100 | 0.0401 | - |
292
- | 2.6433 | 7150 | 0.0552 | - |
293
- | 2.6617 | 7200 | 0.0767 | - |
294
- | 2.6802 | 7250 | 0.0167 | - |
295
- | 2.6987 | 7300 | 0.0459 | - |
296
- | 2.7172 | 7350 | 0.0306 | - |
297
- | 2.7357 | 7400 | 0.0559 | - |
298
- | 2.7542 | 7450 | 0.0688 | - |
299
- | 2.7726 | 7500 | 0.0417 | - |
300
- | 2.7911 | 7550 | 0.033 | - |
301
- | 2.8096 | 7600 | 0.0404 | - |
302
- | 2.8281 | 7650 | 0.0391 | - |
303
- | 2.8466 | 7700 | 0.0254 | - |
304
- | 2.8651 | 7750 | 0.0635 | - |
305
- | 2.8835 | 7800 | 0.0739 | - |
306
- | 2.9020 | 7850 | 0.0274 | - |
307
- | 2.9205 | 7900 | 0.0394 | - |
308
- | 2.9390 | 7950 | 0.0606 | - |
309
- | 2.9575 | 8000 | 0.0098 | - |
310
- | 2.9760 | 8050 | 0.0997 | - |
311
- | 2.9945 | 8100 | 0.0369 | - |
312
 
313
- ### Framework Versions
314
- - Python: 3.9.16
315
- - SetFit: 1.0.1
316
- - Sentence Transformers: 2.2.2
317
- - Transformers: 4.35.0
318
- - PyTorch: 2.1.0+cu121
319
- - Datasets: 2.14.6
320
- - Tokenizers: 0.14.1
321
 
322
- ## Citation
 
 
 
 
 
323
 
324
- ### BibTeX
325
- ```bibtex
326
- @article{https://doi.org/10.48550/arxiv.2209.11055,
327
- doi = {10.48550/ARXIV.2209.11055},
328
- url = {https://arxiv.org/abs/2209.11055},
329
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
330
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
331
- title = {Efficient Few-Shot Learning Without Prompts},
332
- publisher = {arXiv},
333
- year = {2022},
334
- copyright = {Creative Commons Attribution 4.0 International}
335
- }
336
- ```
337
 
338
- <!--
339
- ## Glossary
340
 
341
- *Clearly define terms in order to be accessible across audiences.*
342
- -->
343
 
344
- <!--
345
- ## Model Card Authors
346
 
347
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
348
- -->
349
 
350
- <!--
351
- ## Model Card Contact
352
 
353
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
354
- -->
 
6
  - text-classification
7
  - generated_from_setfit_trainer
8
  metrics:
9
+ - f1
10
+ - accuracy
11
  widget:
12
+ - text: >-
13
+ A combined 20 million people per year die of smoking and hunger, so
14
+ authorities can't seem to feed people and they allow you to buy cigarettes
15
+ but we are facing another lockdown for a virus that has a 99.5% survival
16
+ rate!!! THINK PEOPLE. LOOK AT IT LOGICALLY WITH YOUR OWN EYES.
17
+ - text: >-
18
+ Scientists do not agree on the consequences of climate change, nor is there
19
+ any consensus on that subject. The predictions on that from are just
20
+ ascientific speculation. Bring on the warming."
21
+ - text: >-
22
+ If Tam is our "top doctor"....I am going back to leaches and voodoo...just
23
  as much science in that as the crap she spouts
24
+ - text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions and just a good actor."
 
25
  - text: my dad had huge ones..so they may be real..
26
  pipeline_tag: text-classification
27
  inference: false
 
40
  - type: metric
41
  value: 0.688144336139226
42
  name: Metric
43
+ license: mit
44
+ language:
45
+ - en
46
  ---
47
 
48
+ # Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses
49
 
50
+ The official trained models for **"Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses"**.
51
 
52
+ This model is based on **SetFit** ([SetFit: Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)) and uses the **sentence-transformers/paraphrase-mpnet-base-v2** pretrained model. It has been fine-tuned on our **crisis narratives dataset**.
53
 
54
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ ### Model Information
57
+
58
+ - **Architecture:** SetFit with sentence-transformers/paraphrase-mpnet-base-v2
59
+ - **Task:** Multi-label classification for communicative act actions
60
+ - **Classes:**
61
+ - `informing statement`
62
+ - `challenge`
63
+ - `accusation`
64
+ - `rejection`
65
+ - `appreciation`
66
+ - `request`
67
+ - `question`
68
+ - `acceptance`
69
+ - `apology`
70
 
71
+ ---
72
 
73
+ ### How to Use the Model
 
 
 
74
 
75
+ You can find the code to fine-tune this model and detailed instructions in the following GitHub repository:
76
+ [Acts in Crisis Narratives - SetFit Fine-Tuning Notebook](https://github.com/Aalto-CRAI-CIS/Acts-in-crisis-narratives/blob/main/few_shot_learning/SetFit.ipynb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
+ #### Steps to Load and Use the Model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ 1. Install the SetFit library:
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ 2. Load the model and run inference:
86
+ ```python
87
+ from setfit import SetFitModel
88
 
89
+ # Download from the 🤗 Hub
90
+ model = SetFitModel.from_pretrained("CrisisNarratives/setfit-9classes-multi_label")
91
+
92
+ # Run inference
93
+ preds = model("I'm sorry.")
94
+ ```
95
 
96
+ For detailed instructions, refer to the GitHub repository linked above.
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ ---
 
99
 
100
+ ### Citation
 
101
 
102
+ If you use this model in your work, please cite:
 
103
 
104
+ ##### TO BE ADDED.
 
105
 
106
+ ### Questions or Feedback?
 
107
 
108
+ For questions or feedback, please reach out via our [contact form](mailto:[email protected]).