Faeze commited on
Commit
f6153eb
·
verified ·
1 Parent(s): f1292a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -776
README.md CHANGED
@@ -6,22 +6,25 @@ tags:
6
  - text-classification
7
  - generated_from_setfit_trainer
8
  metrics:
9
- - metric
 
10
  widget:
11
- - text: A combined 20 million people per year die of smoking and hunger, so authorities
12
- can't seem to feed people and they allow you to buy cigarettes but we are facing
13
- another lockdown for a virus that has a 99.5% survival rate!!! THINK PEOPLE. LOOK
14
- AT IT LOGICALLY WITH YOUR OWN EYES.
15
- - text: Scientists do not agree on the consequences of climate change, nor is there
16
- any consensus on that subject. The predictions on that from are just ascientific
17
- speculation. Bring on the warming."
18
- - text: If Tam is our "top doctor"....I am going back to leaches and voodoo...just
 
 
 
19
  as much science in that as the crap she spouts
20
- - text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions\
21
- \ and just a good actor."
22
  - text: my dad had huge ones..so they may be real..
23
  pipeline_tag: text-classification
24
- inference: true
25
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
26
  model-index:
27
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
@@ -35,787 +38,71 @@ model-index:
35
  split: test
36
  metrics:
37
  - type: metric
38
- value: 0.4482758620689655
39
  name: Metric
 
 
 
40
  ---
41
 
42
- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
43
 
44
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
45
 
46
- The model has been trained using an efficient few-shot learning technique that involves:
47
 
48
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
49
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
50
-
51
- ## Model Details
52
-
53
- ### Model Description
54
- - **Model Type:** SetFit
55
- - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
56
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
57
- - **Maximum Sequence Length:** 512 tokens
58
- - **Number of Classes:** 9 classes
59
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
60
- <!-- - **Language:** Unknown -->
61
- <!-- - **License:** Unknown -->
62
-
63
- ### Model Sources
64
-
65
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
66
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
67
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
68
-
69
- ### Model Labels
70
- | Label | Examples |
71
- |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
72
- | 5 | <ul><li>'please show us the evidence I asked for'</li><li>'Please follow https://youtu.be/WpTCt-S-qLM ??'</li><li>'Answer the question. The first is illegal in NY, the second is legal.'</li></ul> |
73
- | 0 | <ul><li>'This guy sounds like he needs to clear his throat'</li><li>'If only most senates in the US can see how climate change can not only effect our planets environment, it also our economys like theirs.'</li><li>'1st Comment!'</li></ul> |
74
- | 7 | <ul><li>'Yeah I can do that.'</li><li>"I can totally accept that the government fund green energy, it's for the best."</li><li>'Yes, he is right ! My Dr. did exactly what he is saying. He started antibiotics then 5 days started the steroids. Hopefully other dr will do the same.'</li></ul> |
75
- | 2 | <ul><li>'ok boomer'</li><li>'I can see where ur coming from she did invite this cousin to live there which mind you is likely an act of kindness, and it is ur private space. But tbh you are also being extremely petty, this man is on the couch, he has early morning shifts, using ur bathroom would not disturb a single person, while using ur roommates means this man has to be very uncomfortable walk through a sleeping persons room every morning and sneak back out again. Likely waking up the cousin in the process. Thats why I believe its an Everyone Sucks here cause theyre both asshole like moves.'</li><li>'suggesting the vaccine to women who are pregnant, when it can cause for many women earlier heavier longer periods, means it triggers a period, we know women in our personal lives that have experienced that along with their period coming twice that month, and we know to avoid foods that can trigger a period because that could potentially cause a miscarriage, so why suggest it?? this is how the whole world will lose confidence in science and medicine because they can down right lie to our face claiming they understand more then you meanwhile propagating the agenda of pharmaceutical companies. absaloutly disgusting and shame on you for betraying our trust.'</li></ul> |
76
- | 3 | <ul><li>'Nothing is hotter than Shawn, not even the sun mate??'</li><li>'No Im not trolling.'</li><li>"I'm not being hurtful. I'm being honest. You need to vaccinate your cat"</li></ul> |
77
- | 6 | <ul><li>'So youre taking a government course?'</li><li>'Is this journalist on work experience ?'</li><li>'Who is here after the movie'</li></ul> |
78
- | 4 | <ul><li>'Forward looking required now, which the leaders are doing and doing their best, sleep deprived and a world of responsibility on them. Thanks to all'</li><li>"Oh, great, you could do that? That'd help me out really."</li><li>"Couldn't be more proud and happy that these heroes are finally taking a stand to the horrible ways the current government is pushing the country"</li></ul> |
79
- | 1 | <ul><li>"Maybe STOP paying commanders who have NEVER even picked up a hose and give the power back to the brigades CAPTAIN'S. And things will start to get better, from someone who is actually doing something. Snowy mountains Australia."</li><li>"@Keith Bawden You have an education in science? Me too! Did you study in any field relevant to the topic? I am currently doing a PhD in biogeochemistry, and my research group is involved in climate science. I can tell you the VAST majority of scientists in fields directly related to or peripheral to climate change accept that it is indeed a real phenomenon, and it is caused by humans. The exceptions you can name are exactly that, exceptions. I'll grant you, Zarkhova may be right about a coming grand solar minimum, but even if so, all it would do is slightly slow temperature increase. There would be no mini ice age (Fuelner and Rahmstorf, 2010). The question is, in 2-3 years, when a 'mini ice age' does not occur, will you change your mind, or find some other reason to deny?"</li><li>"You should have gotten herd immunity in Changi, considering 95% efficacy of Pfizer and 80% or more are vaccinated.\r\nIt's either the efficacy is faked or the vaccine is useless against the indian variant."</li></ul> |
80
- | 8 | <ul><li>"Things got out of hand, I'm sorry."</li><li>'Oh no, I did not mean it that way, it was completely misunderstood what I was saying. Didnt mean to offend you, sorry!'</li><li>'Sorry.'</li></ul> |
81
-
82
- ## Evaluation
83
-
84
- ### Metrics
85
- | Label | Metric |
86
- |:--------|:-------|
87
- | **all** | 0.4483 |
88
-
89
- ## Uses
90
-
91
- ### Direct Use for Inference
92
-
93
- First install the SetFit library:
94
-
95
- ```bash
96
- pip install setfit
97
- ```
98
-
99
- Then you can load this model and run inference.
100
-
101
- ```python
102
- from setfit import SetFitModel
103
-
104
- # Download from the 🤗 Hub
105
- model = SetFitModel.from_pretrained("CrisisNarratives/setfit-9classes-single_label")
106
- # Run inference
107
- preds = model("my dad had huge ones..so they may be real..")
108
- ```
109
-
110
- <!--
111
- ### Downstream Use
112
-
113
- *List how someone could finetune this model on their own dataset.*
114
- -->
115
-
116
- <!--
117
- ### Out-of-Scope Use
118
-
119
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
120
- -->
121
-
122
- <!--
123
- ## Bias, Risks and Limitations
124
-
125
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
126
- -->
127
-
128
- <!--
129
- ### Recommendations
130
-
131
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
132
- -->
133
 
134
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
- ### Training Set Metrics
137
- | Training set | Min | Median | Max |
138
- |:-------------|:----|:--------|:-----|
139
- | Word count | 1 | 25.8891 | 1681 |
140
 
141
- | Label | Training Sample Count |
142
- |:------|:----------------------|
143
- | 0 | 156 |
144
- | 1 | 81 |
145
- | 2 | 64 |
146
- | 3 | 52 |
147
- | 4 | 46 |
148
- | 5 | 63 |
149
- | 6 | 35 |
150
- | 7 | 37 |
151
- | 8 | 7 |
152
 
153
- ### Training Hyperparameters
154
- - batch_size: (16, 16)
155
- - num_epochs: (3, 3)
156
- - max_steps: -1
157
- - sampling_strategy: oversampling
158
- - num_iterations: 40
159
- - body_learning_rate: (1.752e-05, 1.752e-05)
160
- - head_learning_rate: 1.752e-05
161
- - loss: CosineSimilarityLoss
162
- - distance_metric: cosine_distance
163
- - margin: 0.25
164
- - end_to_end: False
165
- - use_amp: False
166
- - warmup_proportion: 0.1
167
- - seed: 30
168
- - eval_max_steps: -1
169
- - load_best_model_at_end: False
170
 
171
- ### Training Results
172
- | Epoch | Step | Training Loss | Validation Loss |
173
- |:------:|:-----:|:-------------:|:---------------:|
174
- | 0.0004 | 1 | 0.3913 | - |
175
- | 0.0185 | 50 | 0.3901 | - |
176
- | 0.0370 | 100 | 0.219 | - |
177
- | 0.0555 | 150 | 0.2308 | - |
178
- | 0.0739 | 200 | 0.2161 | - |
179
- | 0.0924 | 250 | 0.2 | - |
180
- | 0.1109 | 300 | 0.2436 | - |
181
- | 0.1294 | 350 | 0.2219 | - |
182
- | 0.1479 | 400 | 0.1266 | - |
183
- | 0.1664 | 450 | 0.1043 | - |
184
- | 0.1848 | 500 | 0.076 | - |
185
- | 0.2033 | 550 | 0.1331 | - |
186
- | 0.2218 | 600 | 0.0858 | - |
187
- | 0.2403 | 650 | 0.0355 | - |
188
- | 0.2588 | 700 | 0.0475 | - |
189
- | 0.2773 | 750 | 0.066 | - |
190
- | 0.2957 | 800 | 0.0667 | - |
191
- | 0.3142 | 850 | 0.0082 | - |
192
- | 0.3327 | 900 | 0.0658 | - |
193
- | 0.3512 | 950 | 0.0042 | - |
194
- | 0.3697 | 1000 | 0.095 | - |
195
- | 0.3882 | 1050 | 0.0598 | - |
196
- | 0.4067 | 1100 | 0.0037 | - |
197
- | 0.4251 | 1150 | 0.0155 | - |
198
- | 0.4436 | 1200 | 0.0028 | - |
199
- | 0.4621 | 1250 | 0.0025 | - |
200
- | 0.4806 | 1300 | 0.0542 | - |
201
- | 0.4991 | 1350 | 0.001 | - |
202
- | 0.5176 | 1400 | 0.0056 | - |
203
- | 0.5360 | 1450 | 0.001 | - |
204
- | 0.5545 | 1500 | 0.0011 | - |
205
- | 0.5730 | 1550 | 0.0007 | - |
206
- | 0.5915 | 1600 | 0.0014 | - |
207
- | 0.6100 | 1650 | 0.0018 | - |
208
- | 0.6285 | 1700 | 0.0012 | - |
209
- | 0.6470 | 1750 | 0.0005 | - |
210
- | 0.6654 | 1800 | 0.0006 | - |
211
- | 0.6839 | 1850 | 0.0003 | - |
212
- | 0.7024 | 1900 | 0.0002 | - |
213
- | 0.7209 | 1950 | 0.0044 | - |
214
- | 0.7394 | 2000 | 0.003 | - |
215
- | 0.7579 | 2050 | 0.0005 | - |
216
- | 0.7763 | 2100 | 0.0006 | - |
217
- | 0.7948 | 2150 | 0.0005 | - |
218
- | 0.8133 | 2200 | 0.0002 | - |
219
- | 0.8318 | 2250 | 0.0003 | - |
220
- | 0.8503 | 2300 | 0.0003 | - |
221
- | 0.8688 | 2350 | 0.0006 | - |
222
- | 0.8872 | 2400 | 0.0002 | - |
223
- | 0.9057 | 2450 | 0.002 | - |
224
- | 0.9242 | 2500 | 0.0003 | - |
225
- | 0.9427 | 2550 | 0.0002 | - |
226
- | 0.9612 | 2600 | 0.0009 | - |
227
- | 0.9797 | 2650 | 0.0001 | - |
228
- | 0.9982 | 2700 | 0.0002 | - |
229
- | 1.0166 | 2750 | 0.0003 | - |
230
- | 1.0351 | 2800 | 0.0003 | - |
231
- | 1.0536 | 2850 | 0.0004 | - |
232
- | 1.0721 | 2900 | 0.0003 | - |
233
- | 1.0906 | 2950 | 0.0004 | - |
234
- | 1.1091 | 3000 | 0.0003 | - |
235
- | 1.1275 | 3050 | 0.0001 | - |
236
- | 1.1460 | 3100 | 0.0002 | - |
237
- | 1.1645 | 3150 | 0.0005 | - |
238
- | 1.1830 | 3200 | 0.0004 | - |
239
- | 1.2015 | 3250 | 0.0003 | - |
240
- | 1.2200 | 3300 | 0.0003 | - |
241
- | 1.2384 | 3350 | 0.0004 | - |
242
- | 1.2569 | 3400 | 0.0003 | - |
243
- | 1.2754 | 3450 | 0.0002 | - |
244
- | 1.2939 | 3500 | 0.0002 | - |
245
- | 1.3124 | 3550 | 0.0003 | - |
246
- | 1.3309 | 3600 | 0.0005 | - |
247
- | 1.3494 | 3650 | 0.0002 | - |
248
- | 1.3678 | 3700 | 0.0003 | - |
249
- | 1.3863 | 3750 | 0.0002 | - |
250
- | 1.4048 | 3800 | 0.0001 | - |
251
- | 1.4233 | 3850 | 0.0001 | - |
252
- | 1.4418 | 3900 | 0.0004 | - |
253
- | 1.4603 | 3950 | 0.0001 | - |
254
- | 1.4787 | 4000 | 0.0002 | - |
255
- | 1.4972 | 4050 | 0.001 | - |
256
- | 1.5157 | 4100 | 0.0002 | - |
257
- | 1.5342 | 4150 | 0.0003 | - |
258
- | 1.5527 | 4200 | 0.0001 | - |
259
- | 1.5712 | 4250 | 0.0001 | - |
260
- | 1.5896 | 4300 | 0.0002 | - |
261
- | 1.6081 | 4350 | 0.0005 | - |
262
- | 1.6266 | 4400 | 0.0001 | - |
263
- | 1.6451 | 4450 | 0.0002 | - |
264
- | 1.6636 | 4500 | 0.0001 | - |
265
- | 1.6821 | 4550 | 0.0001 | - |
266
- | 1.7006 | 4600 | 0.0001 | - |
267
- | 1.7190 | 4650 | 0.0001 | - |
268
- | 1.7375 | 4700 | 0.0001 | - |
269
- | 1.7560 | 4750 | 0.0002 | - |
270
- | 1.7745 | 4800 | 0.0001 | - |
271
- | 1.7930 | 4850 | 0.0001 | - |
272
- | 1.8115 | 4900 | 0.0001 | - |
273
- | 1.8299 | 4950 | 0.0 | - |
274
- | 1.8484 | 5000 | 0.0001 | - |
275
- | 1.8669 | 5050 | 0.0001 | - |
276
- | 1.8854 | 5100 | 0.0001 | - |
277
- | 1.9039 | 5150 | 0.0001 | - |
278
- | 1.9224 | 5200 | 0.0001 | - |
279
- | 1.9409 | 5250 | 0.0001 | - |
280
- | 1.9593 | 5300 | 0.0001 | - |
281
- | 1.9778 | 5350 | 0.0 | - |
282
- | 1.9963 | 5400 | 0.0001 | - |
283
- | 2.0148 | 5450 | 0.0001 | - |
284
- | 2.0333 | 5500 | 0.0001 | - |
285
- | 2.0518 | 5550 | 0.0001 | - |
286
- | 2.0702 | 5600 | 0.0002 | - |
287
- | 2.0887 | 5650 | 0.0001 | - |
288
- | 2.1072 | 5700 | 0.0001 | - |
289
- | 2.1257 | 5750 | 0.0 | - |
290
- | 2.1442 | 5800 | 0.0001 | - |
291
- | 2.1627 | 5850 | 0.0001 | - |
292
- | 2.1811 | 5900 | 0.0003 | - |
293
- | 2.1996 | 5950 | 0.0001 | - |
294
- | 2.2181 | 6000 | 0.0002 | - |
295
- | 2.2366 | 6050 | 0.0001 | - |
296
- | 2.2551 | 6100 | 0.0001 | - |
297
- | 2.2736 | 6150 | 0.0001 | - |
298
- | 2.2921 | 6200 | 0.0001 | - |
299
- | 2.3105 | 6250 | 0.0001 | - |
300
- | 2.3290 | 6300 | 0.0001 | - |
301
- | 2.3475 | 6350 | 0.0001 | - |
302
- | 2.3660 | 6400 | 0.0001 | - |
303
- | 2.3845 | 6450 | 0.0001 | - |
304
- | 2.4030 | 6500 | 0.0001 | - |
305
- | 2.4214 | 6550 | 0.0001 | - |
306
- | 2.4399 | 6600 | 0.0001 | - |
307
- | 2.4584 | 6650 | 0.0001 | - |
308
- | 2.4769 | 6700 | 0.0001 | - |
309
- | 2.4954 | 6750 | 0.0001 | - |
310
- | 2.5139 | 6800 | 0.0001 | - |
311
- | 2.5323 | 6850 | 0.0002 | - |
312
- | 2.5508 | 6900 | 0.0001 | - |
313
- | 2.5693 | 6950 | 0.0002 | - |
314
- | 2.5878 | 7000 | 0.0001 | - |
315
- | 2.6063 | 7050 | 0.0001 | - |
316
- | 2.6248 | 7100 | 0.0 | - |
317
- | 2.6433 | 7150 | 0.0 | - |
318
- | 2.6617 | 7200 | 0.0001 | - |
319
- | 2.6802 | 7250 | 0.0001 | - |
320
- | 2.6987 | 7300 | 0.0002 | - |
321
- | 2.7172 | 7350 | 0.0001 | - |
322
- | 2.7357 | 7400 | 0.0001 | - |
323
- | 2.7542 | 7450 | 0.0002 | - |
324
- | 2.7726 | 7500 | 0.0 | - |
325
- | 2.7911 | 7550 | 0.0001 | - |
326
- | 2.8096 | 7600 | 0.0005 | - |
327
- | 2.8281 | 7650 | 0.0001 | - |
328
- | 2.8466 | 7700 | 0.0001 | - |
329
- | 2.8651 | 7750 | 0.0001 | - |
330
- | 2.8835 | 7800 | 0.0002 | - |
331
- | 2.9020 | 7850 | 0.0 | - |
332
- | 2.9205 | 7900 | 0.0001 | - |
333
- | 2.9390 | 7950 | 0.0 | - |
334
- | 2.9575 | 8000 | 0.0001 | - |
335
- | 2.9760 | 8050 | 0.0001 | - |
336
- | 2.9945 | 8100 | 0.0001 | - |
337
- | 0.0002 | 1 | 0.0001 | - |
338
- | 0.0108 | 50 | 0.0003 | - |
339
- | 0.0216 | 100 | 0.0001 | - |
340
- | 0.0323 | 150 | 0.0004 | - |
341
- | 0.0431 | 200 | 0.0002 | - |
342
- | 0.0539 | 250 | 0.0006 | - |
343
- | 0.0647 | 300 | 0.0001 | - |
344
- | 0.0755 | 350 | 0.0002 | - |
345
- | 0.0862 | 400 | 0.0051 | - |
346
- | 0.0970 | 450 | 0.1866 | - |
347
- | 0.1078 | 500 | 0.11 | - |
348
- | 0.1186 | 550 | 0.1214 | - |
349
- | 0.1294 | 600 | 0.2073 | - |
350
- | 0.1401 | 650 | 0.019 | - |
351
- | 0.1509 | 700 | 0.0762 | - |
352
- | 0.1617 | 750 | 0.1901 | - |
353
- | 0.1725 | 800 | 0.1234 | - |
354
- | 0.1833 | 850 | 0.0601 | - |
355
- | 0.1940 | 900 | 0.4192 | - |
356
- | 0.2048 | 950 | 0.0397 | - |
357
- | 0.2156 | 1000 | 0.111 | - |
358
- | 0.2264 | 1050 | 0.055 | - |
359
- | 0.2372 | 1100 | 0.0146 | - |
360
- | 0.2480 | 1150 | 0.1277 | - |
361
- | 0.2587 | 1200 | 0.0236 | - |
362
- | 0.2695 | 1250 | 0.0087 | - |
363
- | 0.2803 | 1300 | 0.2315 | - |
364
- | 0.2911 | 1350 | 0.3547 | - |
365
- | 0.3019 | 1400 | 0.5957 | - |
366
- | 0.3126 | 1450 | 0.2253 | - |
367
- | 0.3234 | 1500 | 0.2068 | - |
368
- | 0.3342 | 1550 | 0.3203 | - |
369
- | 0.3450 | 1600 | 0.5608 | - |
370
- | 0.3558 | 1650 | 0.3014 | - |
371
- | 0.3665 | 1700 | 0.3287 | - |
372
- | 0.3773 | 1750 | 0.3206 | - |
373
- | 0.3881 | 1800 | 0.4245 | - |
374
- | 0.3989 | 1850 | 0.2641 | - |
375
- | 0.4097 | 1900 | 0.4057 | - |
376
- | 0.4204 | 1950 | 0.3891 | - |
377
- | 0.4312 | 2000 | 0.3688 | - |
378
- | 0.4420 | 2050 | 0.4642 | - |
379
- | 0.4528 | 2100 | 0.3684 | - |
380
- | 0.4636 | 2150 | 0.246 | - |
381
- | 0.4743 | 2200 | 0.177 | - |
382
- | 0.4851 | 2250 | 0.3416 | - |
383
- | 0.4959 | 2300 | 0.3931 | - |
384
- | 0.5067 | 2350 | 0.2617 | - |
385
- | 0.5175 | 2400 | 0.5679 | - |
386
- | 0.5282 | 2450 | 0.3879 | - |
387
- | 0.5390 | 2500 | 0.3916 | - |
388
- | 0.5498 | 2550 | 0.3657 | - |
389
- | 0.5606 | 2600 | 0.3382 | - |
390
- | 0.5714 | 2650 | 0.4621 | - |
391
- | 0.5821 | 2700 | 0.3235 | - |
392
- | 0.5929 | 2750 | 0.2986 | - |
393
- | 0.6037 | 2800 | 0.3001 | - |
394
- | 0.6145 | 2850 | 0.2309 | - |
395
- | 0.6253 | 2900 | 0.1802 | - |
396
- | 0.6361 | 2950 | 0.2648 | - |
397
- | 0.6468 | 3000 | 0.2875 | - |
398
- | 0.6576 | 3050 | 0.2888 | - |
399
- | 0.6684 | 3100 | 0.2563 | - |
400
- | 0.6792 | 3150 | 0.3129 | - |
401
- | 0.6900 | 3200 | 0.2229 | - |
402
- | 0.7007 | 3250 | 0.2462 | - |
403
- | 0.7115 | 3300 | 0.283 | - |
404
- | 0.7223 | 3350 | 0.3622 | - |
405
- | 0.7331 | 3400 | 0.3428 | - |
406
- | 0.7439 | 3450 | 0.4274 | - |
407
- | 0.7546 | 3500 | 0.4131 | - |
408
- | 0.7654 | 3550 | 0.2123 | - |
409
- | 0.7762 | 3600 | 0.326 | - |
410
- | 0.7870 | 3650 | 0.2488 | - |
411
- | 0.7978 | 3700 | 0.4046 | - |
412
- | 0.8085 | 3750 | 0.2664 | - |
413
- | 0.8193 | 3800 | 0.2426 | - |
414
- | 0.8301 | 3850 | 0.3534 | - |
415
- | 0.8409 | 3900 | 0.2753 | - |
416
- | 0.8517 | 3950 | 0.3177 | - |
417
- | 0.8624 | 4000 | 0.222 | - |
418
- | 0.8732 | 4050 | 0.3942 | - |
419
- | 0.8840 | 4100 | 0.1932 | - |
420
- | 0.8948 | 4150 | 0.2727 | - |
421
- | 0.9056 | 4200 | 0.2713 | - |
422
- | 0.9163 | 4250 | 0.3888 | - |
423
- | 0.9271 | 4300 | 0.3155 | - |
424
- | 0.9379 | 4350 | 0.2727 | - |
425
- | 0.9487 | 4400 | 0.4148 | - |
426
- | 0.9595 | 4450 | 0.297 | - |
427
- | 0.9702 | 4500 | 0.2154 | - |
428
- | 0.9810 | 4550 | 0.2617 | - |
429
- | 0.9918 | 4600 | 0.255 | - |
430
- | 1.0026 | 4650 | 0.395 | - |
431
- | 1.0134 | 4700 | 0.4104 | - |
432
- | 1.0241 | 4750 | 0.2675 | - |
433
- | 1.0349 | 4800 | 0.2458 | - |
434
- | 1.0457 | 4850 | 0.316 | - |
435
- | 1.0565 | 4900 | 0.3786 | - |
436
- | 1.0673 | 4950 | 0.2206 | - |
437
- | 1.0781 | 5000 | 0.3946 | - |
438
- | 1.0888 | 5050 | 0.2178 | - |
439
- | 1.0996 | 5100 | 0.302 | - |
440
- | 1.1104 | 5150 | 0.2449 | - |
441
- | 1.1212 | 5200 | 0.2644 | - |
442
- | 1.1320 | 5250 | 0.3111 | - |
443
- | 1.1427 | 5300 | 0.3953 | - |
444
- | 1.1535 | 5350 | 0.2064 | - |
445
- | 1.1643 | 5400 | 0.3149 | - |
446
- | 1.1751 | 5450 | 0.2073 | - |
447
- | 1.1859 | 5500 | 0.3759 | - |
448
- | 1.1966 | 5550 | 0.2044 | - |
449
- | 1.2074 | 5600 | 0.2034 | - |
450
- | 1.2182 | 5650 | 0.2325 | - |
451
- | 1.2290 | 5700 | 0.2393 | - |
452
- | 1.2398 | 5750 | 0.3568 | - |
453
- | 1.2505 | 5800 | 0.2234 | - |
454
- | 1.2613 | 5850 | 0.2428 | - |
455
- | 1.2721 | 5900 | 0.3561 | - |
456
- | 1.2829 | 5950 | 0.1885 | - |
457
- | 1.2937 | 6000 | 0.3153 | - |
458
- | 1.3044 | 6050 | 0.2288 | - |
459
- | 1.3152 | 6100 | 0.2852 | - |
460
- | 1.3260 | 6150 | 0.289 | - |
461
- | 1.3368 | 6200 | 0.3719 | - |
462
- | 1.3476 | 6250 | 0.1921 | - |
463
- | 1.3583 | 6300 | 0.266 | - |
464
- | 1.3691 | 6350 | 0.2743 | - |
465
- | 1.3799 | 6400 | 0.3637 | - |
466
- | 1.3907 | 6450 | 0.3849 | - |
467
- | 1.4015 | 6500 | 0.1926 | - |
468
- | 1.4122 | 6550 | 0.3594 | - |
469
- | 1.4230 | 6600 | 0.3263 | - |
470
- | 1.4338 | 6650 | 0.4645 | - |
471
- | 1.4446 | 6700 | 0.2304 | - |
472
- | 1.4554 | 6750 | 0.2337 | - |
473
- | 1.4661 | 6800 | 0.2812 | - |
474
- | 1.4769 | 6850 | 0.2975 | - |
475
- | 1.4877 | 6900 | 0.4025 | - |
476
- | 1.4985 | 6950 | 0.1897 | - |
477
- | 1.5093 | 7000 | 0.4523 | - |
478
- | 1.5201 | 7050 | 0.1906 | - |
479
- | 1.5308 | 7100 | 0.2756 | - |
480
- | 1.5416 | 7150 | 0.3313 | - |
481
- | 1.5524 | 7200 | 0.2999 | - |
482
- | 1.5632 | 7250 | 0.2517 | - |
483
- | 1.5740 | 7300 | 0.2421 | - |
484
- | 1.5847 | 7350 | 0.2864 | - |
485
- | 1.5955 | 7400 | 0.3119 | - |
486
- | 1.6063 | 7450 | 0.2178 | - |
487
- | 1.6171 | 7500 | 0.4006 | - |
488
- | 1.6279 | 7550 | 0.2744 | - |
489
- | 1.6386 | 7600 | 0.2306 | - |
490
- | 1.6494 | 7650 | 0.2772 | - |
491
- | 1.6602 | 7700 | 0.2103 | - |
492
- | 1.6710 | 7750 | 0.3151 | - |
493
- | 1.6818 | 7800 | 0.3457 | - |
494
- | 1.6925 | 7850 | 0.2146 | - |
495
- | 1.7033 | 7900 | 0.2105 | - |
496
- | 1.7141 | 7950 | 0.1986 | - |
497
- | 1.7249 | 8000 | 0.2604 | - |
498
- | 1.7357 | 8050 | 0.1683 | - |
499
- | 1.7464 | 8100 | 0.2814 | - |
500
- | 1.7572 | 8150 | 0.2088 | - |
501
- | 1.7680 | 8200 | 0.3935 | - |
502
- | 1.7788 | 8250 | 0.3019 | - |
503
- | 1.7896 | 8300 | 0.3094 | - |
504
- | 1.8003 | 8350 | 0.2024 | - |
505
- | 1.8111 | 8400 | 0.2901 | - |
506
- | 1.8219 | 8450 | 0.2392 | - |
507
- | 1.8327 | 8500 | 0.3296 | - |
508
- | 1.8435 | 8550 | 0.2818 | - |
509
- | 1.8542 | 8600 | 0.2898 | - |
510
- | 1.8650 | 8650 | 0.2598 | - |
511
- | 1.8758 | 8700 | 0.3531 | - |
512
- | 1.8866 | 8750 | 0.2989 | - |
513
- | 1.8974 | 8800 | 0.2356 | - |
514
- | 1.9082 | 8850 | 0.3657 | - |
515
- | 1.9189 | 8900 | 0.3765 | - |
516
- | 1.9297 | 8950 | 0.2668 | - |
517
- | 1.9405 | 9000 | 0.4219 | - |
518
- | 1.9513 | 9050 | 0.3362 | - |
519
- | 1.9621 | 9100 | 0.325 | - |
520
- | 1.9728 | 9150 | 0.267 | - |
521
- | 1.9836 | 9200 | 0.2945 | - |
522
- | 1.9944 | 9250 | 0.2129 | - |
523
- | 2.0052 | 9300 | 0.351 | - |
524
- | 2.0160 | 9350 | 0.4508 | - |
525
- | 2.0267 | 9400 | 0.2375 | - |
526
- | 2.0375 | 9450 | 0.2669 | - |
527
- | 2.0483 | 9500 | 0.232 | - |
528
- | 2.0591 | 9550 | 0.2469 | - |
529
- | 2.0699 | 9600 | 0.2644 | - |
530
- | 2.0806 | 9650 | 0.239 | - |
531
- | 2.0914 | 9700 | 0.3189 | - |
532
- | 2.1022 | 9750 | 0.2711 | - |
533
- | 2.1130 | 9800 | 0.2627 | - |
534
- | 2.1238 | 9850 | 0.2213 | - |
535
- | 2.1345 | 9900 | 0.2311 | - |
536
- | 2.1453 | 9950 | 0.3009 | - |
537
- | 2.1561 | 10000 | 0.2068 | - |
538
- | 2.1669 | 10050 | 0.3129 | - |
539
- | 2.1777 | 10100 | 0.2901 | - |
540
- | 2.1884 | 10150 | 0.2743 | - |
541
- | 2.1992 | 10200 | 0.2809 | - |
542
- | 2.2100 | 10250 | 0.249 | - |
543
- | 2.2208 | 10300 | 0.3017 | - |
544
- | 2.2316 | 10350 | 0.4271 | - |
545
- | 2.2423 | 10400 | 0.2551 | - |
546
- | 2.2531 | 10450 | 0.1911 | - |
547
- | 2.2639 | 10500 | 0.3297 | - |
548
- | 2.2747 | 10550 | 0.3251 | - |
549
- | 2.2855 | 10600 | 0.267 | - |
550
- | 2.2962 | 10650 | 0.3022 | - |
551
- | 2.3070 | 10700 | 0.2353 | - |
552
- | 2.3178 | 10750 | 0.3533 | - |
553
- | 2.3286 | 10800 | 0.216 | - |
554
- | 2.3394 | 10850 | 0.3003 | - |
555
- | 2.3502 | 10900 | 0.2943 | - |
556
- | 2.3609 | 10950 | 0.2959 | - |
557
- | 2.3717 | 11000 | 0.3203 | - |
558
- | 2.3825 | 11050 | 0.2962 | - |
559
- | 2.3933 | 11100 | 0.2475 | - |
560
- | 2.4041 | 11150 | 0.2933 | - |
561
- | 2.4148 | 11200 | 0.2903 | - |
562
- | 2.4256 | 11250 | 0.328 | - |
563
- | 2.4364 | 11300 | 0.1893 | - |
564
- | 2.4472 | 11350 | 0.2367 | - |
565
- | 2.4580 | 11400 | 0.2473 | - |
566
- | 2.4687 | 11450 | 0.2751 | - |
567
- | 2.4795 | 11500 | 0.2708 | - |
568
- | 2.4903 | 11550 | 0.3104 | - |
569
- | 2.5011 | 11600 | 0.2791 | - |
570
- | 2.5119 | 11650 | 0.3181 | - |
571
- | 2.5226 | 11700 | 0.2411 | - |
572
- | 2.5334 | 11750 | 0.3114 | - |
573
- | 2.5442 | 11800 | 0.2759 | - |
574
- | 2.5550 | 11850 | 0.3006 | - |
575
- | 2.5658 | 11900 | 0.2647 | - |
576
- | 2.5765 | 11950 | 0.225 | - |
577
- | 2.5873 | 12000 | 0.2904 | - |
578
- | 2.5981 | 12050 | 0.2776 | - |
579
- | 2.6089 | 12100 | 0.3102 | - |
580
- | 2.6197 | 12150 | 0.2499 | - |
581
- | 2.6304 | 12200 | 0.2763 | - |
582
- | 2.6412 | 12250 | 0.2645 | - |
583
- | 2.6520 | 12300 | 0.3281 | - |
584
- | 2.6628 | 12350 | 0.1793 | - |
585
- | 2.6736 | 12400 | 0.3369 | - |
586
- | 2.6843 | 12450 | 0.2598 | - |
587
- | 2.6951 | 12500 | 0.3334 | - |
588
- | 2.7059 | 12550 | 0.2935 | - |
589
- | 2.7167 | 12600 | 0.4243 | - |
590
- | 2.7275 | 12650 | 0.2212 | - |
591
- | 2.7382 | 12700 | 0.2187 | - |
592
- | 2.7490 | 12750 | 0.3004 | - |
593
- | 2.7598 | 12800 | 0.4244 | - |
594
- | 2.7706 | 12850 | 0.2242 | - |
595
- | 2.7814 | 12900 | 0.3072 | - |
596
- | 2.7922 | 12950 | 0.3468 | - |
597
- | 2.8029 | 13000 | 0.2112 | - |
598
- | 2.8137 | 13050 | 0.2935 | - |
599
- | 2.8245 | 13100 | 0.2618 | - |
600
- | 2.8353 | 13150 | 0.266 | - |
601
- | 2.8461 | 13200 | 0.2458 | - |
602
- | 2.8568 | 13250 | 0.2244 | - |
603
- | 2.8676 | 13300 | 0.2764 | - |
604
- | 2.8784 | 13350 | 0.2262 | - |
605
- | 2.8892 | 13400 | 0.2232 | - |
606
- | 2.9000 | 13450 | 0.2353 | - |
607
- | 2.9107 | 13500 | 0.3661 | - |
608
- | 2.9215 | 13550 | 0.1905 | - |
609
- | 2.9323 | 13600 | 0.3493 | - |
610
- | 2.9431 | 13650 | 0.2481 | - |
611
- | 2.9539 | 13700 | 0.23 | - |
612
- | 2.9646 | 13750 | 0.2407 | - |
613
- | 2.9754 | 13800 | 0.2673 | - |
614
- | 2.9862 | 13850 | 0.2091 | - |
615
- | 2.9970 | 13900 | 0.2471 | - |
616
- | 0.0004 | 1 | 0.287 | - |
617
- | 0.0185 | 50 | 0.285 | - |
618
- | 0.0370 | 100 | 0.233 | - |
619
- | 0.0555 | 150 | 0.2874 | - |
620
- | 0.0739 | 200 | 0.2599 | - |
621
- | 0.0924 | 250 | 0.284 | - |
622
- | 0.1109 | 300 | 0.3046 | - |
623
- | 0.1294 | 350 | 0.2751 | - |
624
- | 0.1479 | 400 | 0.2343 | - |
625
- | 0.1664 | 450 | 0.2809 | - |
626
- | 0.1848 | 500 | 0.2178 | - |
627
- | 0.2033 | 550 | 0.2654 | - |
628
- | 0.2218 | 600 | 0.2673 | - |
629
- | 0.2403 | 650 | 0.2628 | - |
630
- | 0.2588 | 700 | 0.279 | - |
631
- | 0.2773 | 750 | 0.2448 | - |
632
- | 0.2957 | 800 | 0.2502 | - |
633
- | 0.3142 | 850 | 0.3343 | - |
634
- | 0.3327 | 900 | 0.2669 | - |
635
- | 0.3512 | 950 | 0.2714 | - |
636
- | 0.3697 | 1000 | 0.3234 | - |
637
- | 0.3882 | 1050 | 0.2892 | - |
638
- | 0.4067 | 1100 | 0.2437 | - |
639
- | 0.4251 | 1150 | 0.2409 | - |
640
- | 0.4436 | 1200 | 0.2402 | - |
641
- | 0.4621 | 1250 | 0.2479 | - |
642
- | 0.4806 | 1300 | 0.2323 | - |
643
- | 0.4991 | 1350 | 0.2474 | - |
644
- | 0.5176 | 1400 | 0.319 | - |
645
- | 0.5360 | 1450 | 0.3341 | - |
646
- | 0.5545 | 1500 | 0.3162 | - |
647
- | 0.5730 | 1550 | 0.2973 | - |
648
- | 0.5915 | 1600 | 0.2975 | - |
649
- | 0.6100 | 1650 | 0.2828 | - |
650
- | 0.6285 | 1700 | 0.2625 | - |
651
- | 0.6470 | 1750 | 0.2769 | - |
652
- | 0.6654 | 1800 | 0.271 | - |
653
- | 0.6839 | 1850 | 0.2538 | - |
654
- | 0.7024 | 1900 | 0.1979 | - |
655
- | 0.7209 | 1950 | 0.3117 | - |
656
- | 0.7394 | 2000 | 0.2247 | - |
657
- | 0.7579 | 2050 | 0.3248 | - |
658
- | 0.7763 | 2100 | 0.2515 | - |
659
- | 0.7948 | 2150 | 0.2877 | - |
660
- | 0.8133 | 2200 | 0.3182 | - |
661
- | 0.8318 | 2250 | 0.2772 | - |
662
- | 0.8503 | 2300 | 0.2423 | - |
663
- | 0.8688 | 2350 | 0.2638 | - |
664
- | 0.8872 | 2400 | 0.226 | - |
665
- | 0.9057 | 2450 | 0.306 | - |
666
- | 0.9242 | 2500 | 0.2072 | - |
667
- | 0.9427 | 2550 | 0.2434 | - |
668
- | 0.9612 | 2600 | 0.2712 | - |
669
- | 0.9797 | 2650 | 0.3225 | - |
670
- | 0.9982 | 2700 | 0.2534 | - |
671
- | 1.0166 | 2750 | 0.2364 | - |
672
- | 1.0351 | 2800 | 0.241 | - |
673
- | 1.0536 | 2850 | 0.2165 | - |
674
- | 1.0721 | 2900 | 0.2719 | - |
675
- | 1.0906 | 2950 | 0.2694 | - |
676
- | 1.1091 | 3000 | 0.2562 | - |
677
- | 1.1275 | 3050 | 0.2994 | - |
678
- | 1.1460 | 3100 | 0.2477 | - |
679
- | 1.1645 | 3150 | 0.231 | - |
680
- | 1.1830 | 3200 | 0.2751 | - |
681
- | 1.2015 | 3250 | 0.2543 | - |
682
- | 1.2200 | 3300 | 0.2468 | - |
683
- | 1.2384 | 3350 | 0.217 | - |
684
- | 1.2569 | 3400 | 0.2664 | - |
685
- | 1.2754 | 3450 | 0.2556 | - |
686
- | 1.2939 | 3500 | 0.2334 | - |
687
- | 1.3124 | 3550 | 0.2396 | - |
688
- | 1.3309 | 3600 | 0.2383 | - |
689
- | 1.3494 | 3650 | 0.2635 | - |
690
- | 1.3678 | 3700 | 0.2652 | - |
691
- | 1.3863 | 3750 | 0.2573 | - |
692
- | 1.4048 | 3800 | 0.2211 | - |
693
- | 1.4233 | 3850 | 0.2244 | - |
694
- | 1.4418 | 3900 | 0.2399 | - |
695
- | 1.4603 | 3950 | 0.2587 | - |
696
- | 1.4787 | 4000 | 0.304 | - |
697
- | 1.4972 | 4050 | 0.287 | - |
698
- | 1.5157 | 4100 | 0.2667 | - |
699
- | 1.5342 | 4150 | 0.3251 | - |
700
- | 1.5527 | 4200 | 0.2641 | - |
701
- | 1.5712 | 4250 | 0.2576 | - |
702
- | 1.5896 | 4300 | 0.3057 | - |
703
- | 1.6081 | 4350 | 0.2145 | - |
704
- | 1.6266 | 4400 | 0.2665 | - |
705
- | 1.6451 | 4450 | 0.2756 | - |
706
- | 1.6636 | 4500 | 0.3089 | - |
707
- | 1.6821 | 4550 | 0.3013 | - |
708
- | 1.7006 | 4600 | 0.2337 | - |
709
- | 1.7190 | 4650 | 0.2538 | - |
710
- | 1.7375 | 4700 | 0.2428 | - |
711
- | 1.7560 | 4750 | 0.2694 | - |
712
- | 1.7745 | 4800 | 0.2367 | - |
713
- | 1.7930 | 4850 | 0.2656 | - |
714
- | 1.8115 | 4900 | 0.2405 | - |
715
- | 1.8299 | 4950 | 0.2381 | - |
716
- | 1.8484 | 5000 | 0.2363 | - |
717
- | 1.8669 | 5050 | 0.2395 | - |
718
- | 1.8854 | 5100 | 0.3183 | - |
719
- | 1.9039 | 5150 | 0.2918 | - |
720
- | 1.9224 | 5200 | 0.2985 | - |
721
- | 1.9409 | 5250 | 0.3331 | - |
722
- | 1.9593 | 5300 | 0.2716 | - |
723
- | 1.9778 | 5350 | 0.2529 | - |
724
- | 1.9963 | 5400 | 0.2557 | - |
725
- | 2.0148 | 5450 | 0.2618 | - |
726
- | 2.0333 | 5500 | 0.296 | - |
727
- | 2.0518 | 5550 | 0.2866 | - |
728
- | 2.0702 | 5600 | 0.2445 | - |
729
- | 2.0887 | 5650 | 0.2464 | - |
730
- | 2.1072 | 5700 | 0.2247 | - |
731
- | 2.1257 | 5750 | 0.2906 | - |
732
- | 2.1442 | 5800 | 0.2413 | - |
733
- | 2.1627 | 5850 | 0.2805 | - |
734
- | 2.1811 | 5900 | 0.2777 | - |
735
- | 2.1996 | 5950 | 0.2151 | - |
736
- | 2.2181 | 6000 | 0.2938 | - |
737
- | 2.2366 | 6050 | 0.2569 | - |
738
- | 2.2551 | 6100 | 0.2523 | - |
739
- | 2.2736 | 6150 | 0.2649 | - |
740
- | 2.2921 | 6200 | 0.2265 | - |
741
- | 2.3105 | 6250 | 0.216 | - |
742
- | 2.3290 | 6300 | 0.3309 | - |
743
- | 2.3475 | 6350 | 0.2815 | - |
744
- | 2.3660 | 6400 | 0.2566 | - |
745
- | 2.3845 | 6450 | 0.237 | - |
746
- | 2.4030 | 6500 | 0.2165 | - |
747
- | 2.4214 | 6550 | 0.2975 | - |
748
- | 2.4399 | 6600 | 0.2402 | - |
749
- | 2.4584 | 6650 | 0.2943 | - |
750
- | 2.4769 | 6700 | 0.2522 | - |
751
- | 2.4954 | 6750 | 0.2473 | - |
752
- | 2.5139 | 6800 | 0.2652 | - |
753
- | 2.5323 | 6850 | 0.244 | - |
754
- | 2.5508 | 6900 | 0.2488 | - |
755
- | 2.5693 | 6950 | 0.2726 | - |
756
- | 2.5878 | 7000 | 0.2282 | - |
757
- | 2.6063 | 7050 | 0.2386 | - |
758
- | 2.6248 | 7100 | 0.3269 | - |
759
- | 2.6433 | 7150 | 0.2401 | - |
760
- | 2.6617 | 7200 | 0.284 | - |
761
- | 2.6802 | 7250 | 0.3263 | - |
762
- | 2.6987 | 7300 | 0.3019 | - |
763
- | 2.7172 | 7350 | 0.2364 | - |
764
- | 2.7357 | 7400 | 0.2219 | - |
765
- | 2.7542 | 7450 | 0.2798 | - |
766
- | 2.7726 | 7500 | 0.2605 | - |
767
- | 2.7911 | 7550 | 0.2958 | - |
768
- | 2.8096 | 7600 | 0.2028 | - |
769
- | 2.8281 | 7650 | 0.2577 | - |
770
- | 2.8466 | 7700 | 0.2686 | - |
771
- | 2.8651 | 7750 | 0.2894 | - |
772
- | 2.8835 | 7800 | 0.3136 | - |
773
- | 2.9020 | 7850 | 0.2417 | - |
774
- | 2.9205 | 7900 | 0.276 | - |
775
- | 2.9390 | 7950 | 0.2608 | - |
776
- | 2.9575 | 8000 | 0.2545 | - |
777
- | 2.9760 | 8050 | 0.2539 | - |
778
- | 2.9945 | 8100 | 0.1995 | - |
779
 
780
- ### Framework Versions
781
- - Python: 3.9.16
782
- - SetFit: 1.0.1
783
- - Sentence Transformers: 2.2.2
784
- - Transformers: 4.35.0
785
- - PyTorch: 2.1.0+cu121
786
- - Datasets: 2.14.6
787
- - Tokenizers: 0.14.1
788
 
789
- ## Citation
 
 
 
 
 
790
 
791
- ### BibTeX
792
- ```bibtex
793
- @article{https://doi.org/10.48550/arxiv.2209.11055,
794
- doi = {10.48550/ARXIV.2209.11055},
795
- url = {https://arxiv.org/abs/2209.11055},
796
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
797
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
798
- title = {Efficient Few-Shot Learning Without Prompts},
799
- publisher = {arXiv},
800
- year = {2022},
801
- copyright = {Creative Commons Attribution 4.0 International}
802
- }
803
- ```
804
 
805
- <!--
806
- ## Glossary
807
 
808
- *Clearly define terms in order to be accessible across audiences.*
809
- -->
810
 
811
- <!--
812
- ## Model Card Authors
813
 
814
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
815
- -->
816
 
817
- <!--
818
- ## Model Card Contact
819
 
820
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
821
- -->
 
6
  - text-classification
7
  - generated_from_setfit_trainer
8
  metrics:
9
+ - f1
10
+ - accuracy
11
  widget:
12
+ - text: >-
13
+ A combined 20 million people per year die of smoking and hunger, so
14
+ authorities can't seem to feed people and they allow you to buy cigarettes
15
+ but we are facing another lockdown for a virus that has a 99.5% survival
16
+ rate!!! THINK PEOPLE. LOOK AT IT LOGICALLY WITH YOUR OWN EYES.
17
+ - text: >-
18
+ Scientists do not agree on the consequences of climate change, nor is there
19
+ any consensus on that subject. The predictions on that from are just
20
+ ascientific speculation. Bring on the warming."
21
+ - text: >-
22
+ If Tam is our "top doctor"....I am going back to leaches and voodoo...just
23
  as much science in that as the crap she spouts
24
+ - text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions and just a good actor."
 
25
  - text: my dad had huge ones..so they may be real..
26
  pipeline_tag: text-classification
27
+ inference: false
28
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
29
  model-index:
30
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
 
38
  split: test
39
  metrics:
40
  - type: metric
41
+ value: 0.688144336139226
42
  name: Metric
43
+ license: mit
44
+ language:
45
+ - en
46
  ---
47
 
48
+ # Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses
49
 
50
+ The official trained models for **"Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses"**.
51
 
52
+ This model is based on **SetFit** ([SetFit: Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)) and uses the **sentence-transformers/paraphrase-mpnet-base-v2** pretrained model. It has been fine-tuned on our **crisis narratives dataset**.
53
 
54
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ ### Model Information
57
+
58
+ - **Architecture:** SetFit with sentence-transformers/paraphrase-mpnet-base-v2
59
+ - **Task:** Single-label classification for communicative act actions
60
+ - **Classes:**
61
+ - `informing statement`
62
+ - `challenge`
63
+ - `accusation`
64
+ - `rejection`
65
+ - `appreciation`
66
+ - `request`
67
+ - `question`
68
+ - `acceptance`
69
+ - `apology`
70
 
71
+ ---
 
 
 
72
 
73
+ ### How to Use the Model
 
 
 
 
 
 
 
 
 
 
74
 
75
+ You can find the code to fine-tune this model and detailed instructions in the following GitHub repository:
76
+ [Acts in Crisis Narratives - SetFit Fine-Tuning Notebook](https://github.com/Aalto-CRAI-CIS/Acts-in-crisis-narratives/blob/main/few_shot_learning/SetFit.ipynb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
+ #### Steps to Load and Use the Model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ 1. Install the SetFit library:
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ 2. Load the model and run inference:
86
+ ```python
87
+ from setfit import SetFitModel
88
 
89
+ # Download from the 🤗 Hub
90
+ model = SetFitModel.from_pretrained("CrisisNarratives/setfit-9classes-single_label")
91
+
92
+ # Run inference
93
+ preds = model("I'm sorry.")
94
+ ```
95
 
96
+ For detailed instructions, refer to the GitHub repository linked above.
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ ---
 
99
 
100
+ ### Citation
 
101
 
102
+ If you use this model in your work, please cite:
 
103
 
104
+ ##### TO BE ADDED.
 
105
 
106
+ ### Questions or Feedback?
 
107
 
108
+ For questions or feedback, please reach out via our [contact form](mailto:[email protected]).