{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be100454040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1605632, "_total_timesteps": 1577952, "_num_timesteps_at_start": 1277952, "seed": null, "action_noise": null, "start_time": 1719240929182698635, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrWxDx8mVc9+Glgvt06sb05VTi9LW4VPQAAAAAAAAAAxmhFvuIJDT/5k5M++p3rvpa6Zrw+kAE+AAAAAAAAAAAa0oW+F8IXP6JynT4OMAu/q2jKu9rSNT4AAAAAAAAAAI1l1L0Epxs+uzFXO+HKkr77CW68qkdhPQAAAAAAAAAAANmkvHzITz/PUYU7kL4Wv0METTxl3RU9AAAAAAAAAACzuBa9O1LsPan/xb37Wle+l6ElvKyWo70AAAAAAAAAAMDVhr3YyqY/INXtvlVdB7/e9nC9eJJ1vgAAAAAAAAAAM7M4vZFKkT2YSOW8Zf1cviwWBLzG/Sy9AAAAAAAAAACagjq94UCkurJWBrO7e4wwCAisudEiszMAAIA/AACAP5rnKr2P3nm6Sk55uUsp3LRuPoY6bYCPOAAAgD8AAIA/gGUXvT1fJD6L8im9pbhpvvGqFLsIFJg8AAAAAAAAAADN3di8oZa5P0JVvr5zwCs+ykYtPEfrBbsAAAAAAAAAAGYdE71cA3K64H1PPKMMIbZMN4g5AFAYtQAAgD8AAIA/AA+rvDLrhz/RMKC9wAVCvwIjr7wC7807AAAAAAAAAACmcZq99nx9utU3JbicUCCz/uEuOmw2QTcAAIA/AACAP5qtjL0prBy6A3iwPIFbz7iVAL875rLGtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01754172497008777, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHQ59JBgNSMAWyUS6+MAXSUR0Cz8tdB0ITodX2UKGgGR0BxktNATqSpaAdL4GgIR0Cz8vR6Ww/xdX2UKGgGR0ByfFVKf4ATaAdLwmgIR0Cz8zCnpB5YdX2UKGgGR0ByavuXu3MIaAdL52gIR0Cz80GRigCfdX2UKGgGR0Bv0fSH/LkkaAdLvWgIR0Cz812W+oLodX2UKGgGR0Bvg9IVdonKaAdLwWgIR0Cz8222sq8UdX2UKGgGR0Bx1iktVaOhaAdL1WgIR0Cz83NQ0oBrdX2UKGgGR0BxINGax5cDaAdL0WgIR0Cz84qmsNlRdX2UKGgGR0Bw+m+WWyC4aAdLz2gIR0Cz84pKzzErdX2UKGgGR0BzKFSNwR5DaAdL4WgIR0Cz85dgSeyzdX2UKGgGR0BwwQ/lhgE2aAdLwmgIR0Cz86jYukDZdX2UKGgGR0BzFl4SpR4yaAdLzWgIR0Cz87enAIppdX2UKGgGR0Byk2O7xusLaAdLxWgIR0Cz88BHbypadX2UKGgGR0BzoweDFqBVaAdL7GgIR0Cz88K33HrAdX2UKGgGR0BxkQOoYNy6aAdLxmgIR0Cz88zrzGxVdX2UKGgGR0ByG5ANXo1UaAdL0GgIR0Cz89Dw+dK/dX2UKGgGR0BxSssbvPToaAdL1WgIR0Cz8/S1eBxxdX2UKGgGR0BzPdUgjhUBaAdL32gIR0Cz9B9THbRGdX2UKGgGR0BQ/gFHJ9y+aAdLYGgIR0Cz9Dq68QI2dX2UKGgGR0Byum/9Hc1waAdLzWgIR0Cz9FVJDmbLdX2UKGgGR0BxVU4HX2/SaAdL22gIR0Cz9FhAbADadX2UKGgGR0Bvv/A/LTx5aAdLvGgIR0Cz9Fnmig01dX2UKGgGR0Bwc6OOsDGMaAdLsWgIR0Cz9H4Qe3hGdX2UKGgGR0BuEY5PuXu3aAdL0GgIR0Cz9IMAJb+tdX2UKGgGR0ByS3jjrAxjaAdL12gIR0Cz9JNiYsundX2UKGgGR0ByegTakAPvaAdLuWgIR0Cz9LWf9P1tdX2UKGgGR0Byh2ofjjrBaAdL4mgIR0Cz9LpB9kSVdX2UKGgGR0BytPIeYD1XaAdL1mgIR0Cz9MV6mfoSdX2UKGgGR0BynSGetjkNaAdLwmgIR0Cz9M5rHlwMdX2UKGgGR0BxsVgogFHKaAdL1WgIR0Cz9NG3fAKwdX2UKGgGR0BzYGdSVGCqaAdL92gIR0Cz9NNCqp97dX2UKGgGR0BxxAzwc5sCaAdLzmgIR0Cz9N+s1baAdX2UKGgGR0ByOqzIFNcoaAdL4mgIR0Cz9SWSQo1DdX2UKGgGR0AhviOvMbFTaAdLzGgIR0Cz9T1M7EHddX2UKGgGR0BxAkOoYNy6aAdLtmgIR0Cz9WT+717IdX2UKGgGR0BxGfehwl0HaAdLxGgIR0Cz9XpUgjhUdX2UKGgGR0ByCc+3Ytg8aAdLrGgIR0Cz9Y6shgVodX2UKGgGR0Bxpyl/H5rQaAdL12gIR0Cz9eCm/FisdX2UKGgGR0BwLnt4RmK7aAdLw2gIR0Cz9gzDTBqLdX2UKGgGR0BypSyzHCGfaAdLtmgIR0Cz9hLz9S/CdX2UKGgGR0BwtiAiFCb+aAdLvmgIR0Cz9hTk2gnMdX2UKGgGR0BwNiEUTL4faAdL0mgIR0Cz9iQUg0TDdX2UKGgGR0ByBDo9s7+2aAdNGQFoCEdAs/YtElVtGnV9lChoBkdAclRu6VdHD2gHS+9oCEdAs/YwTsY2sXV9lChoBkdAbwTMdtEXtWgHS8FoCEdAs/YyZqmCRXV9lChoBkdAcv2fwqiGnGgHS7poCEdAs/Y50knkUHV9lChoBkdAccctsN2C/WgHS89oCEdAs/ZHKwIMSnV9lChoBkdAbfa3irDIimgHS7RoCEdAs/aFHG0eEXV9lChoBkdAcEeQEIPbwmgHS8VoCEdAs/a/gYP5HnV9lChoBkdAcPwAbADaG2gHS6loCEdAs/bGpcX3xnV9lChoBkdAcmj/I8yN42gHS8JoCEdAs/bhW6shgXV9lChoBkdAb6stmL9/BmgHS6xoCEdAs/dfkHUtqnV9lChoBkdAdEDf8MuvlmgHS/ZoCEdAs/d1eyAxz3V9lChoBkdAb42TlDF6zGgHS7hoCEdAs/eLgccU/XV9lChoBkdAck+Qmu1WsGgHS8VoCEdAs/eOWgOBlXV9lChoBkdAcYaDbah6B2gHS7hoCEdAs/ejhbW3B3V9lChoBkdAcz/ka/ATI2gHS/JoCEdAs/fDjwQUYnV9lChoBkdAcE4ECeVcEGgHS9JoCEdAs/fSwqy4WnV9lChoBkdAcJSvgFX7tWgHS6poCEdAs/fk2kzoEHV9lChoBkdActpHFPznR2gHS+FoCEdAs/ft0GNaQnV9lChoBkdAcwDmg8KXwGgHS+FoCEdAs/fwwAU+LXV9lChoBkdAbvnQSBbwB2gHS9hoCEdAs/f1L7Gec3V9lChoBkdAb9gTB68g6mgHTQQBaAhHQLP4Cod+5OJ1fZQoaAZHQHGX8+RoysVoB0u9aAhHQLP4O9Wp6yB1fZQoaAZHQHB33bZezD5oB0vLaAhHQLP4O8dgfEJ1fZQoaAZHQHMAjundfsxoB0vkaAhHQLP4WAq/dqN1fZQoaAZHQHDizh99c8loB0u4aAhHQLP4i+Kjzqd1fZQoaAZHQHGPPDP4VRFoB0vYaAhHQLP40Bkqc3F1fZQoaAZHQHJto24uscRoB0uxaAhHQLP44nKGL1p1fZQoaAZHQHE/9et0V8FoB0vPaAhHQLP443zMA3l1fZQoaAZHQHHf2YSg5BFoB0u7aAhHQLP45TwUg0V1fZQoaAZHQG5GwYcebNNoB0vEaAhHQLP46P8Q7Ld1fZQoaAZHQHKHPEsJ6Y5oB0vmaAhHQLP49XRw6yV1fZQoaAZHQHCCZg5R0ltoB0u+aAhHQLP4/ahYeT51fZQoaAZHQHDa4atLcsVoB0u+aAhHQLP5BNlyzX11fZQoaAZHQHMPdkjHGS9oB0vOaAhHQLP5FXRgJC11fZQoaAZHQHKbWLgn+hpoB00QAWgIR0Cz+S8U7CBPdX2UKGgGR0By0S1Bt1p1aAdL6mgIR0Cz+VYc3l0YdX2UKGgGR0BwDYo7V8TjaAdLyWgIR0Cz+V1b/wRXdX2UKGgGR0Bv6YGOdXkpaAdLw2gIR0Cz+XGys0YTdX2UKGgGR0BzTt/mT1TSaAdL6GgIR0Cz+YaeGwiadX2UKGgGR0Bza2Hk92X+aAdLtWgIR0Cz+eKpYLb6dX2UKGgGR0Bx7EEpy6tlaAdL7GgIR0Cz+eXZGrjpdX2UKGgGR0BxcP4WUKRdaAdLumgIR0Cz+e2vbGm2dX2UKGgGR0Bv3tFz+3pfaAdLwmgIR0Cz+fiimEXddX2UKGgGR0BzZV15jYqYaAdL0GgIR0Cz+fvv0AcUdX2UKGgGR0BzZaAnUlRhaAdL2mgIR0Cz+iGseXAudX2UKGgGR0ByGcs9SuQqaAdLwGgIR0Cz+ivCQ9zPdX2UKGgGR0ByHzKEFnqWaAdL22gIR0Cz+jGEwnIAdX2UKGgGR0BxMW4vvjOtaAdL3GgIR0Cz+kMHnlnzdX2UKGgGR0BzMH4wh4dIaAdL42gIR0Cz+kXDFZPmdX2UKGgGR0BzTlOclPadaAdLzWgIR0Cz+luS4e90dX2UKGgGR0BxSzadtl7MaAdLt2gIR0Cz+mNEG7jDdX2UKGgGR0BxSaS4e9zwaAdLvmgIR0Cz+oh7E5yVdX2UKGgGR0Bl0aw8nuzAaAdN6ANoCEdAs/qRh8Yyf3V9lChoBkdAcqX3bmEGq2gHS7ZoCEdAs/qTI2fkFXV9lChoBkdAcw7G7z06HWgHS/VoCEdAs/q5EJBw/HV9lChoBkdAc8kdPci4a2gHS7NoCEdAs/rwjSofjnV9lChoBkdAcf6+IuXeFmgHS85oCEdAs/sEE8q4IHV9lChoBkdAcaw0lZ5iVmgHS6FoCEdAs/sL4N7SiXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 490, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}