--- base_model: - CultriX/Qwen2.5-14B-MegaMerge-pt1 - CultriX/Qwen2.5-14B-Wernicke - CultriX/Qwen2.5-14B-MergeStock library_name: transformers tags: - mergekit - merge license: apache-2.0 language: - en model-index: - name: Qwen2.5-14B-MegaMerge-pt2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 52.35 name: strict accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MegaMerge-pt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 50.64 name: normalized accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MegaMerge-pt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 30.06 name: exact match source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MegaMerge-pt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 19.13 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MegaMerge-pt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 18.25 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MegaMerge-pt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.15 name: accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MegaMerge-pt2 name: Open LLM Leaderboard metrics: - accuracy --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [CultriX/Qwen2.5-14B-MegaMerge-pt1](https://huggingface.co/CultriX/Qwen2.5-14B-MegaMerge-pt1) as a base. ### Models Merged The following models were included in the merge: * [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke) * [CultriX/Qwen2.5-14B-MergeStock](https://huggingface.co/CultriX/Qwen2.5-14B-MergeStock) ### Configuration The following YAML configuration was used to produce this model: ```yaml # final_dare_ties_merge.yaml models: - model: CultriX/Qwen2.5-14B-MergeStock parameters: density: 0.5 # Retain 50% of the most significant parameters weight: 0.6 # Emphasize MergeStock's contributions - model: CultriX/Qwen2.5-14B-Wernicke parameters: density: 0.5 # Retain 50% of the most significant parameters weight: 0.4 # Incorporate Wernicke's contributions merge_method: dare_ties base_model: CultriX/Qwen2.5-14B-MegaMerge-pt1 parameters: normalize: true int8_mask: true dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CultriX__Qwen2.5-14B-MegaMerge-pt2) | Metric | Value | |------------------- |------:| | Avg. | 36.69 | | IFEval (0-Shot) | 56.83 | | BBH (3-Shot) | 50.91 | | MATH Lvl 5 (4-Shot)| 27.34 | | GPQA (0-shot) | 17.23 | | MuSR (0-shot) | 18.74 | | MMLU-PRO (5-shot) | 49.12 |