CyberNative commited on
Commit
6b78b29
·
1 Parent(s): 463b2ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
2
  license: llama2
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
  ---
4
+
5
+ !!! THIS IS A PLACEHOLDER !!!
6
+ !!! MODEL COMMING SOON !!!
7
+
8
+ # CyberBase 8k - (llama-2-13b - lmsys/vicuna-13b-v1.5-16k)
9
+
10
+ Base cybersecurity model for future fine-tuning, it is not reccomended to use on it's own.
11
+ - **CyberBase is a [lmsys/vicuna-13b-v1.5-16k](https://huggingface.co/lmsys/vicuna-13b-v1.5-16k) QLORA fine-tuned on of [CyberNative/github_cybersecurity_READMEs](https://huggingface.co/datasets/CyberNative/github_cybersecurity_READMEs)
12
+ - **sequence_len: 8192
13
+ - **lora_r: 128
14
+ - **lora_alpha: 16
15
+ - **num_epochs: 2
16
+
17
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
18
+
19
+ ---
20
+ inference: false
21
+ license: llama2
22
+ ---
23
+
24
+ # Vicuna Model Card
25
+
26
+ ## Model Details
27
+
28
+ Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.
29
+
30
+ - **Developed by:** [LMSYS](https://lmsys.org/)
31
+ - **Model type:** An auto-regressive language model based on the transformer architecture
32
+ - **License:** Llama 2 Community License Agreement
33
+ - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
34
+
35
+ ### Model Sources
36
+
37
+ - **Repository:** https://github.com/lm-sys/FastChat
38
+ - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
39
+ - **Paper:** https://arxiv.org/abs/2306.05685
40
+ - **Demo:** https://chat.lmsys.org/
41
+
42
+ ## Uses
43
+
44
+ The primary use of Vicuna is research on large language models and chatbots.
45
+ The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
46
+
47
+ ## How to Get Started with the Model
48
+
49
+ - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights
50
+ - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
51
+
52
+ ## Training Details
53
+
54
+ Vicuna v1.5 (16k) is fine-tuned from Llama 2 with supervised instruction fine-tuning and linear RoPE scaling.
55
+ The training data is around 125K conversations collected from ShareGPT.com. These conversations are packed into sequences that contain 16K tokens each.
56
+ See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
57
+
58
+ ## Evaluation
59
+
60
+ ![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true)
61
+
62
+ Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
63
+
64
+ ## Difference between different versions of Vicuna
65
+
66
+ See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)