cpi-connect's picture
Upload model
816e104
raw
history blame
6.6 kB
from transformers import PreTrainedModel
import torch
import joblib, os
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
from .nugget_model_utils import CustomRobertaWithPOS as NuggetModel
from .args_model_utils import CustomRobertaWithPOS as ArgumentModel
from .realis_model_utils import CustomRobertaWithPOS as RealisModel
from .configuration import CybersecurityKnowledgeGraphConfig
from .event_nugget_predict import create_dataloader as event_nugget_dataloader
from .event_realis_predict import create_dataloader as event_realis_dataloader
from .event_arg_predict import create_dataloader as event_argument_dataloader
class CybersecurityKnowledgeGraphModel(PreTrainedModel):
config_class = CybersecurityKnowledgeGraphConfig
def __init__(self, config):
super().__init__(config)
self.tokenizer = AutoTokenizer.from_pretrained("ehsanaghaei/SecureBERT")
self.event_nugget_model_path = config.event_nugget_model_path
self.event_argument_model_path = config.event_argument_model_path
self.event_realis_model_path = config.event_realis_model_path
self.event_nugget_dataloader = event_nugget_dataloader
self.event_argument_dataloader = event_argument_dataloader
self.event_realis_dataloader = event_realis_dataloader
self.event_nugget_model = NuggetModel(num_classes = 11)
self.event_argument_model = ArgumentModel(num_classes = 43)
self.event_realis_model = RealisModel(num_classes_realis = 4)
self.role_classifiers = {}
self.embed_model = SentenceTransformer('all-MiniLM-L6-v2')
self.event_nugget_list = config.event_nugget_list
self.event_args_list = config.event_args_list
self.realis_list = config.realis_list
self.arg_2_role = config.arg_2_role
def forward(self, text):
nugget_dataloader, _ = self.event_nugget_dataloader(text)
argument_dataloader, _ = self.event_argument_dataloader(self.event_nugget_model, text)
realis_dataloader, _ = self.event_realis_dataloader(self.event_nugget_model, text)
nugget_pred = self.forward_model(self.event_nugget_model, nugget_dataloader)
no_nuggets = torch.all(nugget_pred == 0, dim=1)
argument_preds = torch.empty(nugget_pred.size())
realis_preds = torch.empty(nugget_pred.size())
for idx, (batch, no_nugget) in enumerate(zip(nugget_pred, no_nuggets)):
if no_nugget:
argument_pred, realis_pred = torch.zeros(batch.size()), torch.zeros(batch.size())
else:
argument_pred = self.forward_model(self.event_argument_model, argument_dataloader)
realis_pred = self.forward_model(self.event_realis_model, realis_dataloader)
argument_preds[idx] = argument_pred
realis_preds[idx] = realis_pred
attention_mask = [batch["attention_mask"] for batch in nugget_dataloader]
attention_mask = torch.cat(attention_mask, dim=-1)
input_ids = [batch["input_ids"] for batch in nugget_dataloader]
input_ids = torch.cat(input_ids, dim=-1)
output = {"nugget" : nugget_pred, "argument" : argument_preds, "realis" : realis_preds, "input_ids" : input_ids, "attention_mask" : attention_mask}
no_of_batch = output['input_ids'].shape[0]
structured_output = []
for b in range(no_of_batch):
token_mask = [True if self.tokenizer.decode(token) not in self.tokenizer.all_special_tokens else False for token in output['input_ids'][b]]
filtered_ids = output['input_ids'][b][token_mask]
filtered_tokens = [self.tokenizer.decode(token) for token in filtered_ids]
filtered_nuggets = output['nugget'][b][token_mask]
filtered_args = output['argument'][b][token_mask]
filtered_realis = output['realis'][b][token_mask]
batch_output = [{"id" : id.item(), "token" : token, "nugget" : self.event_nugget_list[int(nugget.item())], "argument" : self.event_args_list[int(arg.item())], "realis" : self.realis_list[int(realis.item())]}
for id, token, nugget, arg, realis in zip(filtered_ids, filtered_tokens, filtered_nuggets, filtered_args, filtered_realis)]
structured_output.extend(batch_output)
args = [(idx, item["argument"], item["token"]) for idx, item in enumerate(structured_output) if item["argument"]!= "O"]
entities = []
current_entity = None
for position, label, token in args:
if label.startswith('B-'):
if current_entity is not None:
entities.append(current_entity)
current_entity = {'label': label[2:], 'text': token.replace(" ", ""), 'start': position, 'end': position}
elif label.startswith('I-'):
if current_entity is not None:
current_entity['text'] += ' ' + token.replace(" ", "")
current_entity['end'] = position
for entity in entities:
context = self.tokenizer.decode([item["id"] for item in structured_output[max(0, entity["start"] - 15) : min(len(structured_output), entity["end"] + 15)]])
entity["context"] = context
for entity in entities:
if len(self.arg_2_role[entity["label"]]) > 1:
sent_embed = self.embed_model.encode(entity["context"])
arg_embed = self.embed_model.encode(entity["text"])
embed = np.concatenate((sent_embed, arg_embed))
arg_clf = self.role_classifiers[entity["label"]]
role_id = arg_clf.predict(embed.reshape(1, -1))
role = self.arg_2_role[entity["label"]][role_id[0]]
entity["role"] = role
else:
entity["role"] = self.arg_2_role[entity["label"]][0]
for item in structured_output:
item["role"] = "O"
for entity in entities:
for i in range(entity["start"], entity["end"] + 1):
structured_output[i]["role"] = entity["role"]
return structured_output
def forward_model(self, model, dataloader):
predicted_label = []
for batch in dataloader:
with torch.no_grad():
logits = model(**batch)
batch_predicted_label = logits.argmax(-1)
predicted_label.append(batch_predicted_label)
return torch.cat(predicted_label, dim=-1)