|
from transformers import PreTrainedModel |
|
import torch |
|
|
|
from cybersecurity_knowledge_graph.nugget_model_utils import CustomRobertaWithPOS as NuggetModel |
|
from cybersecurity_knowledge_graph.args_model_utils import CustomRobertaWithPOS as ArgumentModel |
|
from cybersecurity_knowledge_graph.realis_model_utils import CustomRobertaWithPOS as RealisModel |
|
|
|
from cybersecurity_knowledge_graph.configuration import CybersecurityKnowledgeGraphConfig |
|
|
|
from cybersecurity_knowledge_graph.event_nugget_predict import create_dataloader as event_nugget_dataloader |
|
from cybersecurity_knowledge_graph.event_realis_predict import create_dataloader as event_realis_dataloader |
|
from cybersecurity_knowledge_graph.event_arg_predict import create_dataloader as event_argument_dataloader |
|
|
|
class CybersecurityKnowledgeGraphModel(PreTrainedModel): |
|
config_class = CybersecurityKnowledgeGraphConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.event_nugget_model_path = config.event_nugget_model_path |
|
self.event_argument_model_path = config.event_argument_model_path |
|
self.event_realis_model_path = config.event_realis_model_path |
|
|
|
self.event_nugget_dataloader = event_nugget_dataloader |
|
self.event_argument_dataloader = event_argument_dataloader |
|
self.event_realis_dataloader = event_realis_dataloader |
|
|
|
self.event_nugget_model = NuggetModel(num_classes = 11) |
|
self.event_argument_model = ArgumentModel(num_classes = 43) |
|
self.event_realis_model = RealisModel(num_classes_realis = 4) |
|
|
|
self.event_nugget_model.load_state_dict(torch.load(self.event_nugget_model_path)) |
|
self.event_realis_model.load_state_dict(torch.load(self.event_realis_model_path)) |
|
self.event_argument_model.load_state_dict(torch.load(self.event_argument_model_path)) |
|
|
|
|
|
def forward(self, text): |
|
nugget_dataloader, _ = self.event_nugget_dataloader(text) |
|
argument_dataloader, _ = self.event_argument_dataloader(text) |
|
realis_dataloader, _ = self.event_realis_dataloader(text) |
|
|
|
nugget_pred = self.forward_model(self.event_nugget_model, nugget_dataloader) |
|
no_nuggets = torch.all(nugget_pred == 0, dim=1) |
|
|
|
argument_preds = torch.empty(nugget_pred.size()) |
|
realis_preds = torch.empty(nugget_pred.size()) |
|
for idx, (batch, no_nugget) in enumerate(zip(nugget_pred, no_nuggets)): |
|
if no_nugget: |
|
argument_pred, realis_pred = torch.zeros(batch.size()), torch.zeros(batch.size()) |
|
else: |
|
argument_pred = self.forward_model(self.event_argument_model, argument_dataloader) |
|
realis_pred = self.forward_model(self.event_realis_model, realis_dataloader) |
|
argument_preds[idx] = argument_pred |
|
realis_preds[idx] = realis_pred |
|
|
|
return {"nugget" : nugget_pred, "argument" : argument_pred, "realis" : realis_pred} |
|
|
|
def forward_model(self, model, dataloader): |
|
predicted_label = [] |
|
for batch in dataloader: |
|
with torch.no_grad(): |
|
print(batch.keys()) |
|
logits = model(**batch) |
|
|
|
batch_predicted_label = logits.argmax(-1) |
|
predicted_label.append(batch_predicted_label) |
|
return torch.cat(predicted_label, dim=-1) |