from transformers import PreTrainedModel import torch from cybersecurity_knowledge_graph.nugget_model_utils import CustomRobertaWithPOS as NuggetModel from cybersecurity_knowledge_graph.args_model_utils import CustomRobertaWithPOS as ArgumentModel from cybersecurity_knowledge_graph.realis_model_utils import CustomRobertaWithPOS as RealisModel from cybersecurity_knowledge_graph.configuration import CybersecurityKnowledgeGraphConfig from cybersecurity_knowledge_graph.event_nugget_predict import create_dataloader as event_nugget_dataloader from cybersecurity_knowledge_graph.event_realis_predict import create_dataloader as event_realis_dataloader from cybersecurity_knowledge_graph.event_arg_predict import create_dataloader as event_argument_dataloader class CybersecurityKnowledgeGraphModel(PreTrainedModel): config_class = CybersecurityKnowledgeGraphConfig def __init__(self, config): super().__init__(config) self.event_nugget_model_path = config.event_nugget_model_path self.event_argument_model_path = config.event_argument_model_path self.event_realis_model_path = config.event_realis_model_path self.event_nugget_dataloader = event_nugget_dataloader self.event_argument_dataloader = event_argument_dataloader self.event_realis_dataloader = event_realis_dataloader self.event_nugget_model = NuggetModel(num_classes = 11) self.event_argument_model = ArgumentModel(num_classes = 43) self.event_realis_model = RealisModel(num_classes_realis = 4) self.event_nugget_model.load_state_dict(torch.load(self.event_nugget_model_path)) self.event_realis_model.load_state_dict(torch.load(self.event_realis_model_path)) self.event_argument_model.load_state_dict(torch.load(self.event_argument_model_path)) def forward(self, text): nugget_dataloader, _ = self.event_nugget_dataloader(text) argument_dataloader, _ = self.event_argument_dataloader(text) realis_dataloader, _ = self.event_realis_dataloader(text) nugget_pred = self.forward_model(self.event_nugget_model, nugget_dataloader) no_nuggets = torch.all(nugget_pred == 0, dim=1) argument_preds = torch.empty(nugget_pred.size()) realis_preds = torch.empty(nugget_pred.size()) for idx, (batch, no_nugget) in enumerate(zip(nugget_pred, no_nuggets)): if no_nugget: argument_pred, realis_pred = torch.zeros(batch.size()), torch.zeros(batch.size()) else: argument_pred = self.forward_model(self.event_argument_model, argument_dataloader) realis_pred = self.forward_model(self.event_realis_model, realis_dataloader) argument_preds[idx] = argument_pred realis_preds[idx] = realis_pred return {"nugget" : nugget_pred, "argument" : argument_pred, "realis" : realis_pred} def forward_model(self, model, dataloader): predicted_label = [] for batch in dataloader: with torch.no_grad(): print(batch.keys()) logits = model(**batch) batch_predicted_label = logits.argmax(-1) predicted_label.append(batch_predicted_label) return torch.cat(predicted_label, dim=-1)