File size: 3,961 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
print('Loading...')
from src.model_run import RWKV_RNN
import numpy as np
import os, copy, types, gc, sys
import torch
from src.utils import TOKENIZER

torch.backends.cudnn.benchmark = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
np.set_printoptions(precision=4, suppress=True, linewidth=200)

WORD_NAME = ["20B_tokenizer.json", "20B_tokenizer.json"]
UNKNOWN_CHAR = None
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR)

args = types.SimpleNamespace()
args.RUN_DEVICE = "cpu"  
args.FLOAT_MODE = "fp32"
args.vocab_size = 50277
args.MODEL_NAME = 'zrwkv-37fifth'
args.n_layer = 12
args.n_embd = 768
args.ctx_len = 1024

user = "User"
bot = "Daniel"
interface = ":"

os.environ["RWKV_RUN_DEVICE"] = args.RUN_DEVICE
MODEL_NAME = args.MODEL_NAME

print(f'loading... {MODEL_NAME}')
model = RWKV_RNN(args)

model_tokens = []
current_state = None

def run_rnn(tokens, newline_adj = 0):
    global model_tokens, current_state
    for i in range(len(tokens)):
        model_tokens += [int(tokens[i])]
        if i == len(tokens) - 1:
            out, current_state = model.forward(model_tokens, current_state)
        else:
            current_state = model.forward(model_tokens, current_state, preprocess_only = True)
    
    out[0] = -999999999  
    out[187] += newline_adj
    return out

all_state = {}
def save_all_stat(name, last_out):
    all_state[name] = {}
    all_state[name]['out'] = last_out
    all_state[name]['rnn'] = copy.deepcopy(current_state)
    all_state[name]['token'] = copy.deepcopy(model_tokens)

def load_all_stat(name):
    global model_tokens, current_state
    current_state = copy.deepcopy(all_state[name]['rnn'])
    model_tokens = copy.deepcopy(all_state[name]['token'])
    return all_state[name]['out']

print(f'\nRun prompt...')

out = ""
gc.collect()

save_all_stat('chat_init', out)
save_all_stat('chat', out)  # ensure that 'chat' key is added to all_state

print(f'### prompt ###\n[{tokenizer.tokenizer.decode(model_tokens)}]\n')


def reply_msg(msg):
    print(f'{bot}{interface} {msg}\n')

def on_message(message):
    global model_tokens, current_state

    msg = message.replace('\\n','\n').strip()
    if len(msg) > 10000:
        reply_msg('your message is too long (max 1000 tokens)')
        return

    out = load_all_stat('chat')
    new = f"{user}{interface} {msg}\n{bot}{interface}"
    out = run_rnn(tokenizer.tokenizer.encode(new), newline_adj=-999999999)
    save_all_stat('chat_pre', out)

    begin = len(model_tokens)
    out_last = begin
    print(f'{bot}{interface}', end='', flush=True)
    for i in range(8000):
        token = tokenizer.sample_logits(
            out,
            model_tokens,
            args.ctx_len,
            temperature=1.0,
            top_p_usual=0.85,
            top_p_newline=0.85,
        )
        out = run_rnn([token], newline_adj=1)

        xxx = tokenizer.tokenizer.decode(model_tokens[out_last:])
        if '\ufffd' not in xxx and 'user' not in str(xxx).lower() and '\n' not in xxx and str(xxx) != ':' and str(xxx) != '\n\n' and len(str(xxx)) > 0:
            print(xxx, end='', flush=True)
            out_last = begin + i + 1
        else:
            print('\n', end='', flush=True)
            out_last = begin + i + 1
        
        send_msg = tokenizer.tokenizer.decode(model_tokens[begin:])
        if '\ufffd' in send_msg or send_msg.endswith(f'{user}{interface}') or send_msg.endswith(f'{bot}{interface}') or '\n' in send_msg:
            send_msg = send_msg.strip()
            send_msg = send_msg.replace(f'{user}{interface}', '')
            send_msg = send_msg.replace(f'{bot}{interface}', '')
            send_msg = send_msg.replace('\n', '')
            break   
    save_all_stat('chat', out)

print('Start chatting with Daniel!')

while True:
    msg = input(f'{user}{interface} ')
    if len(msg.strip()) > 0:
        on_message(msg)
    else:
        print('Error: please say something')