File size: 11,767 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime


class MyDataset(Dataset):
    def __init__(self, args):
        self.args = args

        if args.data_type == "binidx":
            self.vocab_size = args.vocab_size
            rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")

            if args.my_pile_version == 1:
                self.data = MMapIndexedDataset(args.data_file)
                self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
                rank_zero_info(f"Data has {self.data_size} tokens.")
            else:
                data_list = open(args.data_file, "r", encoding='utf-8').read().strip().split('\n')
                data_list = [i.strip().split(' ') for i in data_list]
                self.data = []
                self.data_size = int(data_list[-1][-1])
                rank_zero_info(f"Data has {self.data_size} chunks.")
                for d in data_list:
                    data = MMapIndexedDataset(d[0])
                    data_size = len(data._bin_buffer) // data._index._dtype_size
                    assert (data_size - args.ctx_len) == int(d[1])
                    self.data += [[int(d[-1]), int(d[1]), data]]
                # rank_zero_info(self.data)

            if args.my_qa_mask > 0:
                # self.data_pile = MMapIndexedDataset('/fsx/pile/pile_20B_tokenizer_text_document')
                self.data_pile = MMapIndexedDataset('/fsx/pile_deduped/pile_0.87_deduped_text_document')
                self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
            else:
                self.data_pile = None
                self.data_pile_size = 0

            if args.my_pile_stage > 0:
                # assert self.data_size == 332115325534 and self.vocab_size == 50277
                self.samples_per_epoch = args.epoch_steps * args.real_bsz
                assert self.samples_per_epoch == 40320
                rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
                dataset_slot = self.data_size // args.ctx_len
                if args.my_pile_stage != 4:
                    assert MaybeIsPrime(args.magic_prime)
                    assert args.magic_prime % 3 == 2
                    assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
        elif args.data_type == "numpy":
            self.data = np.load(args.data_file).astype("int")
            self.vocab_size = args.vocab_size
            rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
            self.data_size = len(self.data)
            rank_zero_info(f"Data has {self.data_size} tokens.")
        elif args.data_type == "uint16":
            self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
            self.vocab_size = args.vocab_size
            rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
            self.data_size = self.data.shape[0]
            rank_zero_info(f"Data has {self.data_size} samples.")
        elif args.data_type == "wds_img":
            self.vocab_size = -1
            self.data_size = -1
            self.data = None
            self.error_count = 0
        else:
            if args.data_type == "dummy":
                rank_zero_info("Building dummy data...")
                self.data = ""
                for i in range(100000):
                    aa = (i) % 10000
                    bb = (i * i) % 10000
                    cc = aa + bb
                    self.data += f".{aa}+{bb}={cc}."
            else:
                self.data = open(args.data_file, "r", encoding=args.data_type).read()
            rank_zero_info("Building token list...")
            unique = sorted(list(set(self.data)))
            self.vocab_size = len(unique)
            # rank_zero_info()
            # for u in unique:
            #     print(u, end=' ')
            # rank_zero_info('\n\n')
            xx = 0
            xxObj = {}
            for u in unique:
                xxObj[xx] = u
                xx += 1
            with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
                vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
            self.data_size = len(self.data)
            rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
            self.stoi = {ch: i for i, ch in enumerate(unique)}
            self.itos = {i: ch for i, ch in enumerate(unique)}

    def __len__(self):
        return self.args.epoch_steps * self.args.micro_bsz

    def __getitem__(self, idx):
        args = self.args
        rank = self.global_rank
        epoch = self.real_epoch
        world_size = self.world_size
        # print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")

        if args.data_type == "wds_img":
            def init_wds(self, bias=0):
                def identity(x):
                    return x            
                import webdataset as wds
                import torchvision.transforms as transforms
                # img_transform = transforms.Compose(
                #     [transforms.CenterCrop(256)]
                # )
                img_transform = transforms.Compose([
                    transforms.CenterCrop(512),
                    transforms.Resize((args.my_img_size))
                ])
                self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
                for pp in self.data_raw.pipeline:
                    if 'Resampled' in str(pp):
                        pp.deterministic = True
                        def worker_seed():
                            return rank*100000+epoch+bias*1e9
                        pp.worker_seed = worker_seed
                self.data = iter(self.data_raw)
                # print(f"WebDataset loaded for rank {rank} epoch {epoch}")
            if self.data == None:
                init_wds(self)
            trial = 0
            while trial < 10:
                try:
                    dd = next(self.data) # jpg, json, txt
                    break
                except:
                    print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
                    self.error_count += 1
                    init_wds(self, self.error_count)
                    trial += 1
                    pass
            # print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {dd[2]}")
            # with open(f"sample_{rank}.txt", "a", encoding="utf-8") as tmp:
            #     tmp.write(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {int(dd[1]['key'])}\n")
            return dd[0], dd[2]
        else:
            if args.data_type == "uint16":
                i = np.random.randint(0, self.data_size-1)
                dix = self.data[i]
                x = torch.tensor(dix[:-1], dtype=torch.long)
                y = torch.tensor(dix[1:], dtype=torch.long)
            else:
                ctx_len = args.ctx_len
                req_len = ctx_len + 1
                magic_prime = args.magic_prime
                data = self.data

                if args.my_pile_stage > 0:
                    ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank

                    if args.my_qa_mask > 0:
                        ii_orig = ii
                        if ii % 2 == 0:
                            ii = -1
                            data = self.data_pile
                        else:
                            ii = ii // 2
                    if data == self.data_pile:
                        i = np.random.randint(0, self.data_pile_size - req_len)
                    else:
                        if args.my_pile_stage == 4 or ii < args.my_random_steps:
                            # cheat: pick a random spot in dataset
                            if args.my_pile_version == 1:
                                i = np.random.randint(0, self.data_size - req_len)
                            else:
                                i = np.random.randint(0, self.data_size)
                        else:
                            ii = ii - args.my_random_steps
                            factor = (math.sqrt(5) - 1) / 2
                            factor = int(magic_prime * factor)
                            i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
                            i = i + args.my_pile_shift
                    # print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
                else:
                    # cheat: pick a random spot in dataset
                    i = np.random.randint(0, self.data_size - req_len)

                if args.data_type == "binidx":
                    if args.my_pile_version == 1:
                        dix = data.get(idx=0, offset=i, length=req_len).astype(int)
                    else:
                        # self.data : cutoff, chunk_count, data
                        for j in range(len(data)):
                            if i < data[j][0]:
                                ii = i
                                i = (i - (data[j-1][0] if j > 0 else 0)) % data[j][1]
                                dix = data[j][2].get(idx=0, offset=i, length=req_len).astype(int)
                                # print(ii, j, i)
                                break
                elif args.data_type == "numpy":
                    dix = data[i : i + req_len]
                else:
                    dix = [self.stoi[s] for s in data[i : i + req_len]]

                if args.my_qa_mask == 1:
                    if data == self.data_pile:
                        z = [1] * ctx_len
                    else:
                        z = [0] * ctx_len
                        z_sum = 0
                        isGood = False
                        for i in range(3, ctx_len):
                            if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
                                isGood = True
                            if dix[i] == 0:
                                isGood = False
                            if isGood:
                                z[i] = 1
                                z_sum += 1
                        if z_sum == 0:
                            z = [1] * ctx_len
                            i = np.random.randint(0, self.data_pile_size - req_len)
                            dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
                    z = torch.tensor(z, dtype=torch.bfloat16)

                x = torch.tensor(dix[:-1], dtype=torch.long)
                y = torch.tensor(dix[1:], dtype=torch.long)

                # if ii_orig < 50:
                #     # if rank == 1:
                #     print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
                # else:
                #     exit(0)

                if args.my_qa_mask == 1:
                    return x, y, z

            return x, y