File size: 16,780 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import numpy as np
import os, math, gc
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision as vision
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
# from pytorch_msssim import MS_SSIM

def __nop(ob):
    return ob
MyModule = torch.jit.ScriptModule
# MyFunction = __nop
MyFunction = torch.jit.script_method

import clip
from transformers import CLIPModel

class L2pooling(nn.Module):
    def __init__(self, filter_size=5, stride=2, channels=None, pad_off=0):
        super(L2pooling, self).__init__()
        self.padding = (filter_size - 2) // 2
        self.stride = stride
        self.channels = channels
        a = np.hanning(filter_size)[1:-1]
        g = torch.Tensor(a[:, None] * a[None, :])
        g = g / torch.sum(g)
        self.register_buffer(
            "filter", g[None, None, :, :].repeat((self.channels, 1, 1, 1))
        )

    def forward(self, input):
        input = input**2
        out = F.conv2d(
            input,
            self.filter,
            stride=self.stride,
            padding=self.padding,
            groups=input.shape[1],
        )
        return (out + 1e-12).sqrt()


class DISTS(torch.nn.Module):
    def __init__(self, load_weights=True):
        super(DISTS, self).__init__()
        vgg_pretrained_features = vision.models.vgg16(
            weights="VGG16_Weights.IMAGENET1K_V1"
        ).features
        self.stage1 = torch.nn.Sequential()
        self.stage2 = torch.nn.Sequential()
        self.stage3 = torch.nn.Sequential()
        self.stage4 = torch.nn.Sequential()
        self.stage5 = torch.nn.Sequential()
        for x in range(0, 4):
            self.stage1.add_module(str(x), vgg_pretrained_features[x])
        self.stage2.add_module(str(4), L2pooling(channels=64))
        for x in range(5, 9):
            self.stage2.add_module(str(x), vgg_pretrained_features[x])
        self.stage3.add_module(str(9), L2pooling(channels=128))
        for x in range(10, 16):
            self.stage3.add_module(str(x), vgg_pretrained_features[x])
        self.stage4.add_module(str(16), L2pooling(channels=256))
        for x in range(17, 23):
            self.stage4.add_module(str(x), vgg_pretrained_features[x])
        self.stage5.add_module(str(23), L2pooling(channels=512))
        for x in range(24, 30):
            self.stage5.add_module(str(x), vgg_pretrained_features[x])

        self.register_buffer(
            "mean", torch.tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1)
        )
        self.register_buffer(
            "std", torch.tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1)
        )

        self.chns = [3, 64, 128, 256, 512, 512]
        self.register_buffer(
            "alpha", nn.Parameter(torch.randn(1, sum(self.chns), 1, 1))
        )
        self.register_buffer("beta", nn.Parameter(torch.randn(1, sum(self.chns), 1, 1)))
        self.alpha.data.normal_(0.1, 0.01)
        self.beta.data.normal_(0.1, 0.01)
        weights = torch.load("test/DISTS_weights.pt")
        self.alpha.data = weights["alpha"]
        self.beta.data = weights["beta"]

        for param in self.parameters():
            param.requires_grad = False

    def forward_once(self, x):
        h = (x - self.mean) / self.std
        h = self.stage1(h)
        h_relu1_2 = h
        h = self.stage2(h)
        h_relu2_2 = h
        h = self.stage3(h)
        h_relu3_3 = h
        h = self.stage4(h)
        h_relu4_3 = h
        h = self.stage5(h)
        h_relu5_3 = h
        return [x, h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3]

    def forward(self, x, y, require_grad=False, batch_average=False):
        if require_grad:
            feats0 = self.forward_once(x)
            feats1 = self.forward_once(y)
        else:
            with torch.no_grad():
                feats0 = self.forward_once(x)
                feats1 = self.forward_once(y)
        dist1 = 0
        dist2 = 0
        c1 = 1e-6
        c2 = 1e-6
        w_sum = self.alpha.sum() + self.beta.sum()
        alpha = torch.split(self.alpha / w_sum, self.chns, dim=1)
        beta = torch.split(self.beta / w_sum, self.chns, dim=1)

        for k in range(len(self.chns)):
            x_mean = feats0[k].mean([2, 3], keepdim=True)
            y_mean = feats1[k].mean([2, 3], keepdim=True)
            S1 = (2 * x_mean * y_mean + c1) / (x_mean**2 + y_mean**2 + c1)
            dist1 = dist1 + (alpha[k] * S1).sum(1, keepdim=True)

            x_var = ((feats0[k] - x_mean) ** 2).mean([2, 3], keepdim=True)
            y_var = ((feats1[k] - y_mean) ** 2).mean([2, 3], keepdim=True)
            xy_cov = (feats0[k] * feats1[k]).mean(
                [2, 3], keepdim=True
            ) - x_mean * y_mean
            S2 = (2 * xy_cov + c2) / (x_var + y_var + c2)
            dist2 = dist2 + (beta[k] * S2).sum(1, keepdim=True)

        score = 1 - (dist1 + dist2).squeeze()

        if batch_average:
            return score.mean()
        else:
            return score

    class ToBinary(torch.autograd.Function):
        @staticmethod
        def forward(ctx, x):#, noise_scale):
            # if noise_scale > 0:
            #     noise_min = 0.5 - noise_scale / 2
            #     noise_max = 0.5 + noise_scale / 2
            #     return torch.floor(x + torch.empty_like(x).uniform_(noise_min, noise_max))
            # else:
            return torch.floor(x + 0.5) # no need for noise when we have plenty of data

        @staticmethod
        def backward(ctx, grad_output):
            return grad_output.clone()#, None

########################################################################################################

class R_ENCODER(MyModule):
    def __init__(self, args):
        super().__init__()
        self.args = args
        dd = 8
        self.Bxx = nn.BatchNorm2d(dd*64)

        self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
        self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
        self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)

        self.B00 = nn.BatchNorm2d(dd*4)
        self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
        self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
        self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
        self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)

        self.B10 = nn.BatchNorm2d(dd*16)
        self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
        self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
        self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
        self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)

        self.B20 = nn.BatchNorm2d(dd*64)
        self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
        self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
        # self.B21 = nn.BatchNorm2d(dd*64)
        # self.C24 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        # self.C25 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
        # self.C26 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        # self.C27 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)

        self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)

    @MyFunction
    def forward(self, img):
        ACT = F.mish

        x = self.CIN(img)
        xx = self.Bxx(F.pixel_unshuffle(x, 8))
        x = x + self.Cx1(ACT(self.Cx0(x)))

        x = F.pixel_unshuffle(x, 2)
        x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
        x = x + self.C03(ACT(self.C02(x)))

        x = F.pixel_unshuffle(x, 2)
        x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
        x = x + self.C13(ACT(self.C12(x)))

        x = F.pixel_unshuffle(x, 2)
        x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
        x = x + self.C23(ACT(self.C22(x)))
        # x = x + self.C25(ACT(self.C24(ACT(self.B21(x)))))
        # x = x + self.C27(ACT(self.C26(x)))

        x = self.COUT(x + xx)
        return torch.sigmoid(x)

########################################################################################################

class R_DECODER(MyModule):
    def __init__(self, args):
        super().__init__()
        self.args = args
        dd = 8
        self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)

        self.B00 = nn.BatchNorm2d(dd*64)
        self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
        self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
        # self.B01 = nn.BatchNorm2d(dd*64)
        # self.C04 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        # self.C05 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
        # self.C06 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
        # self.C07 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)

        self.B10 = nn.BatchNorm2d(dd*16)
        self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
        self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
        self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
        self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)

        self.B20 = nn.BatchNorm2d(dd*4)
        self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
        self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
        self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
        self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)

        self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
        self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
        self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)

    @MyFunction
    def forward(self, code):
        ACT = F.mish
        x = self.CIN(code)

        x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
        x = x + self.C03(ACT(self.C02(x)))
        # x = x + self.C05(ACT(self.C04(ACT(self.B01(x)))))
        # x = x + self.C07(ACT(self.C06(x)))
        x = F.pixel_shuffle(x, 2)

        x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
        x = x + self.C13(ACT(self.C12(x)))
        x = F.pixel_shuffle(x, 2)

        x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
        x = x + self.C23(ACT(self.C22(x)))
        x = F.pixel_shuffle(x, 2)

        x = x + self.Cx1(ACT(self.Cx0(x)))
        x = self.COUT(x)
        
        return torch.sigmoid(x)

########################################################################################################`

def cosine_loss(x, y):
    x = F.normalize(x, dim=-1)
    y = F.normalize(y, dim=-1)
    return 1 - torch.einsum('ij,ij->i',[x,y])

class RWKV_IMG(pl.LightningModule):
    def __init__(self, args):
        super().__init__()
        self.args = args
            
        self.encoder = R_ENCODER(args)
        self.decoder = R_DECODER(args)

        self.clip_model = None
        clip_name = args.my_img_clip
        if clip_name == 'B32':
            clip_name = 'ViT-B/32'
        elif clip_name == 'B16':
            clip_name = 'ViT-B/16'
        elif clip_name == 'L14':
            clip_name = 'ViT-L/14'
        elif clip_name == 'OB32':
            clip_name = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
            self.clip_model = CLIPModel.from_pretrained(clip_name)
            self.clip_model.encode_image = self.clip_model.get_image_features
        if self.clip_model == None:
            self.clip_model, _ = clip.load(clip_name, jit = True)
        self.register_buffer(
            "clip_mean", torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1)
        )
        self.register_buffer(
            "clip_std", torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1)
        )

        for n, p in self.named_parameters():
            if 'clip_model' in n:
                p.requires_grad = False

        self.loss_dists = DISTS()
        # self.loss_ssim = MS_SSIM(data_range=1, size_average=True, channel=3)

    def configure_optimizers(self):
        args = self.args
        optim_groups = [
            {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
        ]
        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(
                optim_groups,
                lr=self.args.lr_init,
                betas=self.args.betas,
                eps=self.args.adam_eps,
                bias_correction=True,
                adamw_mode=False,
                weight_decay=0,
                amsgrad=False,
            )
        return FusedAdam(
            optim_groups,
            lr=self.args.lr_init,
            betas=self.args.betas,
            eps=self.args.adam_eps,
            bias_correction=True,
            adam_w_mode=False,
            weight_decay=0,
            amsgrad=False,
        )
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            config = strategy.config["zero_optimization"]
            return config.get("offload_optimizer") or config.get("offload_param")
        return False

    def forward(self, img):
        z = self.encoder(img)
        z = ToBinary.apply(z)#, self.args.my_img_noise_scale)
        out = self.decoder(z)
        return out

    def training_step(self, batch, batch_idx):
        args = self.args
        img, txt = batch
        out = self(img)
        if self.trainer.is_global_zero:
            if (self.trainer.global_step + 1) % (100 * int(args.devices)) == 0:
                img_dir = f"test/image_model/{args.run_name}"
                if not os.path.exists(img_dir):
                    os.makedirs(img_dir)
                vision.utils.save_image(
                    img[:4], f"{img_dir}/{self.trainer.global_step}-src.jpg"#, padding=0
                )
                vision.utils.save_image(
                    out[:4], f"{img_dir}/{self.trainer.global_step}-out.jpg"#, padding=0
                )

        # loss_ssim = 1 - self.loss_ssim(out, img)
        loss_dists = self.loss_dists(out, img, require_grad=True, batch_average=True)

        iii = self.clip_model.encode_image((img - self.clip_mean) / self.clip_std)
        ooo = self.clip_model.encode_image((out - self.clip_mean) / self.clip_std)
        loss_clip = torch.mean(cosine_loss(iii, ooo))

        if args.my_img_l1_scale > 0:
            loss_l1 = F.l1_loss(out, img)
            return loss_dists + loss_clip * args.my_img_clip_scale + loss_l1 * args.my_img_l1_scale
        else:
            return loss_dists + loss_clip * args.my_img_clip_scale

    def training_step_end(self, batch_parts):
        all = self.all_gather(batch_parts)
        if self.trainer.is_global_zero:
            self.trainer.my_loss_all = all

    def generate_init_weight(self):
        print(
            f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
        )
        m = {}
        for n in self.state_dict():
            scale = 1
            p = self.state_dict()[n]
            shape = p.shape
            ss = n.split('.')

            # if ss[0] in ['encoder', 'decoder']:
            #     if ss[2] == 'bias':
            #         scale = 0
            #     # elif n == 'encoder.CIN.weight':
            #     #     nn.init.dirac_(p)
            #     else:
            #         try:
            #             if ss[1][0] == 'C' and (int(ss[1][2]) % 2 == 1):
            #                 scale = 0
            #         except:
            #             pass
            # m[n] = p * scale

            m[n] = p

            m[n] = m[n].cpu()
            if os.environ["RWKV_FLOAT_MODE"] == "fp16":
                m[n] = m[n].half()
            elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
                m[n] = m[n].bfloat16()

        gc.collect()
        torch.cuda.empty_cache()
        return m