File size: 8,582 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import types
import torch
import math, os, gc
from torch.nn import functional as F
import torch.nn as nn
from typing import List, Dict

MyModule = nn.Module
def __nop(ob):
    return ob
MyFunction = __nop

# # try torchdynamo
# import torchdynamo
# MyFunction = torchdynamo.optimize(os.environ["RWKV_RUN_BACKEND"]) # !!!BUGGY!!! wrong output

# try torch jit --> faster for fp32, slower for fp16 (why?)
if os.environ["RWKV_JIT_ON"] == "1":
    MyModule = torch.jit.ScriptModule
    MyFunction = torch.jit.script_method

RWKV_HEAD_QK_DIM = 0

DEBUG_TIME = False   # True False - show trained time-coeffs

RWKV_RESCALE_LAYER = 6 # set x=x/2 every X layer

############################################################################################################

class RWKV_RNN(MyModule):
    def __init__(self, args):
        super().__init__()

        self.args = args
        self.FLOAT_MODE = args.FLOAT_MODE
        self.RUN_DEVICE = args.RUN_DEVICE

        with torch.no_grad():
            w = torch.load(args.MODEL_NAME + '.pth', map_location='cpu')
            # refine weights and send to correct device
            keys = list(w.keys())
            if 'pos_emb_x' in keys:
                w['pos_emb'] = (w['pos_emb_x'] + w['pos_emb_y']).reshape(args.ctx_len+1, -1)[:-1,:]
            keys = list(w.keys())
            print_need_newline = False
            for x in keys:
                block_id = 0
                if 'blocks.' in x:
                    block_id = int(x.split('.')[1])
                if 'att.output.weight' in x:
                    w[x] = w[x] / (2 ** int(block_id // RWKV_RESCALE_LAYER))
                if 'ffn.value.weight' in x:
                    w[x] = w[x] / (2 ** int(block_id // RWKV_RESCALE_LAYER))
                                
                if '.time_' in x:
                    w[x] = w[x].squeeze()
                    if DEBUG_TIME:
                        print(x, w[x].numpy())
                if '.time_decay' in x:
                    w[x] = w[x].float()
                    w[x] = -torch.exp(w[x])
                elif '.time_first' in x:
                    w[x] = w[x].float()
                else:
                    if self.FLOAT_MODE == "fp32":
                        w[x] = w[x].float()
                    elif self.FLOAT_MODE == "bf16":
                        w[x] = w[x].bfloat16()
                    elif self.FLOAT_MODE == "fp16":
                        w[x] = w[x].half()

                w[x].requires_grad = False
                if args.RUN_DEVICE == 'cuda' and x != 'emb.weight':
                    w[x] = w[x].cuda()

                if ('blocks.' not in x) or ('blocks.0.' in x):
                    if print_need_newline:
                        print_need_newline = False
                else:
                    print_need_newline = True

        # store weights in self.w
        keys = list(w.keys())
        self.w = types.SimpleNamespace()
        for x in keys:
            xx = x.split('.')
            here = self.w
            for i in range(len(xx)):
                if xx[i].isdigit():
                    ii = int(xx[i])
                    if ii not in here:
                        here[ii] = types.SimpleNamespace()
                    here = here[ii]
                else:
                    if i == len(xx) - 1:
                        setattr(here, xx[i], w[x])
                    elif not hasattr(here, xx[i]):
                        if xx[i+1].isdigit():
                            setattr(here, xx[i], {})
                        else:
                            setattr(here, xx[i], types.SimpleNamespace())
                    here = getattr(here, xx[i])

        self.eval()
        gc.collect()
        torch.cuda.empty_cache()

    def LN(self, x, w):
        return F.layer_norm(x, (self.args.n_embd,), weight=w.weight, bias=w.bias)

    # state[] 0=ffn_xx 1=att_xx 2=att_aa 3=att_bb 4=att_pp

    @MyFunction
    def FF(self, x, state, i:int, time_mix_k, time_mix_r, kw, vw, rw):
        if self.FLOAT_MODE == "bf16":
            xk = x * time_mix_k + state[5*i+0].type(torch.bfloat16) * (1 - time_mix_k)
            xr = x * time_mix_r + state[5*i+0].type(torch.bfloat16) * (1 - time_mix_r)
            state[5*i+0] = x.float()
        elif self.FLOAT_MODE == "fp16":
            xk = x * time_mix_k + state[5*i+0].half() * (1 - time_mix_k)
            xr = x * time_mix_r + state[5*i+0].half() * (1 - time_mix_r)
            state[5*i+0] = x.float()            
        else:
            xk = x * time_mix_k + state[5*i+0] * (1 - time_mix_k)
            xr = x * time_mix_r + state[5*i+0] * (1 - time_mix_r)
            state[5*i+0] = x

        r = torch.sigmoid(rw @ xr)
        k = torch.square(torch.relu(kw @ xk))
        kv = vw @ k

        return r * kv

    @MyFunction
    def SA(self, x, state, i:int, time_mix_k, time_mix_v, time_mix_r, time_first, time_decay, kw, vw, rw, ow):
        if self.FLOAT_MODE == "bf16":
            xk = x * time_mix_k + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_k)
            xv = x * time_mix_v + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_v)
            xr = x * time_mix_r + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_r)
            state[5*i+1] = x.float()
        elif self.FLOAT_MODE == "fp16":
            xk = x * time_mix_k + state[5*i+1].half() * (1 - time_mix_k)
            xv = x * time_mix_v + state[5*i+1].half() * (1 - time_mix_v)
            xr = x * time_mix_r + state[5*i+1].half() * (1 - time_mix_r)
            state[5*i+1] = x.float()            
        else:
            xk = x * time_mix_k + state[5*i+1] * (1 - time_mix_k)
            xv = x * time_mix_v + state[5*i+1] * (1 - time_mix_v)
            xr = x * time_mix_r + state[5*i+1] * (1 - time_mix_r)
            state[5*i+1] = x

        r = torch.sigmoid(rw @ xr)
        k = kw @ xk
        v = vw @ xv

        if '16' in self.FLOAT_MODE:
            kk = k.float()
            vv = v.float()
        else:
            kk = k
            vv = v
        aa = state[5*i+2]
        bb = state[5*i+3]
        pp = state[5*i+4]
        ww = time_first + kk
        p = torch.maximum(pp, ww)
        e1 = torch.exp(pp - p)
        e2 = torch.exp(ww - p)
        a = e1 * aa + e2 * vv
        b = e1 * bb + e2
        ww = pp + time_decay
        p = torch.maximum(ww, kk)
        e1 = torch.exp(ww - p)
        e2 = torch.exp(kk - p)
        state[5*i+2] = e1 * aa + e2 * vv
        state[5*i+3] = e1 * bb + e2
        state[5*i+4] = p
        if self.FLOAT_MODE == "bf16":
            wkv = (a / b).type(torch.bfloat16)
        elif self.FLOAT_MODE == "fp16":
            wkv = (a / b).half()
        else:
            wkv = a / b
        
        return ow @ (r * wkv)

    def forward(self, ctx, state, preprocess_only = False):
        with torch.no_grad():
            w = self.w
            args = self.args

            x = w.emb.weight[ctx[-1]]
            if self.RUN_DEVICE == 'cuda':
                x = x.cuda()
            try:
                pos_emb = w.pos_emb[len(ctx)-1]
                x = x + pos_emb
            except:
                pass             

            if state == None:
                state = torch.zeros(args.n_layer * 5, args.n_embd, device=self.RUN_DEVICE)
                for i in range(args.n_layer):
                    state[5*i+4] -= 1e30

            for i in range(args.n_layer):
                if i == 0:
                    x = self.LN(x, w.blocks[i].ln0)
                
                ww = w.blocks[i].att
                x = x + self.SA(self.LN(x, w.blocks[i].ln1), state, i, 
                    ww.time_mix_k, ww.time_mix_v, ww.time_mix_r, ww.time_first, ww.time_decay, 
                    ww.key.weight, ww.value.weight, ww.receptance.weight, ww.output.weight)
                
                ww = w.blocks[i].ffn
                x = x + self.FF(self.LN(x, w.blocks[i].ln2), state, i, 
                    ww.time_mix_k, ww.time_mix_r, 
                    ww.key.weight, ww.value.weight, ww.receptance.weight)
                
                if (i+1) % RWKV_RESCALE_LAYER == 0:
                    x = x / 2

            if preprocess_only:
                return state

            x = self.LN(x, w.ln_out)
            x = w.head.weight @ x

            return x.float(), state