File size: 8,582 Bytes
8cea444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import types
import torch
import math, os, gc
from torch.nn import functional as F
import torch.nn as nn
from typing import List, Dict
MyModule = nn.Module
def __nop(ob):
return ob
MyFunction = __nop
# # try torchdynamo
# import torchdynamo
# MyFunction = torchdynamo.optimize(os.environ["RWKV_RUN_BACKEND"]) # !!!BUGGY!!! wrong output
# try torch jit --> faster for fp32, slower for fp16 (why?)
if os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
RWKV_HEAD_QK_DIM = 0
DEBUG_TIME = False # True False - show trained time-coeffs
RWKV_RESCALE_LAYER = 6 # set x=x/2 every X layer
############################################################################################################
class RWKV_RNN(MyModule):
def __init__(self, args):
super().__init__()
self.args = args
self.FLOAT_MODE = args.FLOAT_MODE
self.RUN_DEVICE = args.RUN_DEVICE
with torch.no_grad():
w = torch.load(args.MODEL_NAME + '.pth', map_location='cpu')
# refine weights and send to correct device
keys = list(w.keys())
if 'pos_emb_x' in keys:
w['pos_emb'] = (w['pos_emb_x'] + w['pos_emb_y']).reshape(args.ctx_len+1, -1)[:-1,:]
keys = list(w.keys())
print_need_newline = False
for x in keys:
block_id = 0
if 'blocks.' in x:
block_id = int(x.split('.')[1])
if 'att.output.weight' in x:
w[x] = w[x] / (2 ** int(block_id // RWKV_RESCALE_LAYER))
if 'ffn.value.weight' in x:
w[x] = w[x] / (2 ** int(block_id // RWKV_RESCALE_LAYER))
if '.time_' in x:
w[x] = w[x].squeeze()
if DEBUG_TIME:
print(x, w[x].numpy())
if '.time_decay' in x:
w[x] = w[x].float()
w[x] = -torch.exp(w[x])
elif '.time_first' in x:
w[x] = w[x].float()
else:
if self.FLOAT_MODE == "fp32":
w[x] = w[x].float()
elif self.FLOAT_MODE == "bf16":
w[x] = w[x].bfloat16()
elif self.FLOAT_MODE == "fp16":
w[x] = w[x].half()
w[x].requires_grad = False
if args.RUN_DEVICE == 'cuda' and x != 'emb.weight':
w[x] = w[x].cuda()
if ('blocks.' not in x) or ('blocks.0.' in x):
if print_need_newline:
print_need_newline = False
else:
print_need_newline = True
# store weights in self.w
keys = list(w.keys())
self.w = types.SimpleNamespace()
for x in keys:
xx = x.split('.')
here = self.w
for i in range(len(xx)):
if xx[i].isdigit():
ii = int(xx[i])
if ii not in here:
here[ii] = types.SimpleNamespace()
here = here[ii]
else:
if i == len(xx) - 1:
setattr(here, xx[i], w[x])
elif not hasattr(here, xx[i]):
if xx[i+1].isdigit():
setattr(here, xx[i], {})
else:
setattr(here, xx[i], types.SimpleNamespace())
here = getattr(here, xx[i])
self.eval()
gc.collect()
torch.cuda.empty_cache()
def LN(self, x, w):
return F.layer_norm(x, (self.args.n_embd,), weight=w.weight, bias=w.bias)
# state[] 0=ffn_xx 1=att_xx 2=att_aa 3=att_bb 4=att_pp
@MyFunction
def FF(self, x, state, i:int, time_mix_k, time_mix_r, kw, vw, rw):
if self.FLOAT_MODE == "bf16":
xk = x * time_mix_k + state[5*i+0].type(torch.bfloat16) * (1 - time_mix_k)
xr = x * time_mix_r + state[5*i+0].type(torch.bfloat16) * (1 - time_mix_r)
state[5*i+0] = x.float()
elif self.FLOAT_MODE == "fp16":
xk = x * time_mix_k + state[5*i+0].half() * (1 - time_mix_k)
xr = x * time_mix_r + state[5*i+0].half() * (1 - time_mix_r)
state[5*i+0] = x.float()
else:
xk = x * time_mix_k + state[5*i+0] * (1 - time_mix_k)
xr = x * time_mix_r + state[5*i+0] * (1 - time_mix_r)
state[5*i+0] = x
r = torch.sigmoid(rw @ xr)
k = torch.square(torch.relu(kw @ xk))
kv = vw @ k
return r * kv
@MyFunction
def SA(self, x, state, i:int, time_mix_k, time_mix_v, time_mix_r, time_first, time_decay, kw, vw, rw, ow):
if self.FLOAT_MODE == "bf16":
xk = x * time_mix_k + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_k)
xv = x * time_mix_v + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_v)
xr = x * time_mix_r + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_r)
state[5*i+1] = x.float()
elif self.FLOAT_MODE == "fp16":
xk = x * time_mix_k + state[5*i+1].half() * (1 - time_mix_k)
xv = x * time_mix_v + state[5*i+1].half() * (1 - time_mix_v)
xr = x * time_mix_r + state[5*i+1].half() * (1 - time_mix_r)
state[5*i+1] = x.float()
else:
xk = x * time_mix_k + state[5*i+1] * (1 - time_mix_k)
xv = x * time_mix_v + state[5*i+1] * (1 - time_mix_v)
xr = x * time_mix_r + state[5*i+1] * (1 - time_mix_r)
state[5*i+1] = x
r = torch.sigmoid(rw @ xr)
k = kw @ xk
v = vw @ xv
if '16' in self.FLOAT_MODE:
kk = k.float()
vv = v.float()
else:
kk = k
vv = v
aa = state[5*i+2]
bb = state[5*i+3]
pp = state[5*i+4]
ww = time_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
a = e1 * aa + e2 * vv
b = e1 * bb + e2
ww = pp + time_decay
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
state[5*i+2] = e1 * aa + e2 * vv
state[5*i+3] = e1 * bb + e2
state[5*i+4] = p
if self.FLOAT_MODE == "bf16":
wkv = (a / b).type(torch.bfloat16)
elif self.FLOAT_MODE == "fp16":
wkv = (a / b).half()
else:
wkv = a / b
return ow @ (r * wkv)
def forward(self, ctx, state, preprocess_only = False):
with torch.no_grad():
w = self.w
args = self.args
x = w.emb.weight[ctx[-1]]
if self.RUN_DEVICE == 'cuda':
x = x.cuda()
try:
pos_emb = w.pos_emb[len(ctx)-1]
x = x + pos_emb
except:
pass
if state == None:
state = torch.zeros(args.n_layer * 5, args.n_embd, device=self.RUN_DEVICE)
for i in range(args.n_layer):
state[5*i+4] -= 1e30
for i in range(args.n_layer):
if i == 0:
x = self.LN(x, w.blocks[i].ln0)
ww = w.blocks[i].att
x = x + self.SA(self.LN(x, w.blocks[i].ln1), state, i,
ww.time_mix_k, ww.time_mix_v, ww.time_mix_r, ww.time_first, ww.time_decay,
ww.key.weight, ww.value.weight, ww.receptance.weight, ww.output.weight)
ww = w.blocks[i].ffn
x = x + self.FF(self.LN(x, w.blocks[i].ln2), state, i,
ww.time_mix_k, ww.time_mix_r,
ww.key.weight, ww.value.weight, ww.receptance.weight)
if (i+1) % RWKV_RESCALE_LAYER == 0:
x = x / 2
if preprocess_only:
return state
x = self.LN(x, w.ln_out)
x = w.head.weight @ x
return x.float(), state
|