File size: 8,556 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only

def my_save(dd, ff):
    if '14b-run1' not in ff:
        torch.save(dd, ff)
    else:
        fn = ff.split('/')[-1]
        fff = '/dev/shm/' + fn
        torch.save(dd, fff)
        subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)

class train_callback(pl.Callback):
    def __init__(self, args):
        super().__init__()
        self.args = args

    def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
        args = self.args
        # if args.cuda_cleanup > 0:
        #     torch.cuda.empty_cache()
        real_step = trainer.global_step + args.epoch_begin * args.epoch_steps

        # LR schedule
        w_step = args.warmup_steps
        if args.lr_final == args.lr_init or args.epoch_count == 0:
            lr = args.lr_init
            if trainer.global_step < w_step:
                lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
        else:
            decay_step = real_step - args.my_pile_edecay * args.epoch_steps
            decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
            progress = (decay_step - w_step + 1) / (decay_total - w_step)
            progress = min(1, max(0, progress))

            if args.lr_final == 0 or args.lr_init == 0:  # linear decay
                lr = args.lr_init + (args.lr_final - args.lr_init) * progress
            else:  # exp decay
                lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))

            if trainer.global_step < w_step:
                lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
            # if trainer.is_global_zero:
            #     print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)

        for param_group in trainer.optimizers[0].param_groups:
            if args.layerwise_lr > 0:
                param_group["lr"] = lr * param_group["my_lr_scale"]
                # print(param_group["lr"], param_group["my_lr_scale"])
            else:
                param_group["lr"] = lr

        trainer.my_lr = lr
        # rank_zero_info(f"{real_step} {lr}")

        if trainer.global_step == 0:
            if trainer.is_global_zero:  # logging
                trainer.my_loss_sum = 0
                trainer.my_loss_count = 0
                trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
                trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
                try:
                    print(f"\n{trainer.strategy.config}\n")
                    trainer.my_log.write(f"{trainer.strategy.config}\n")
                except:
                    pass
                trainer.my_log.flush()
                if len(args.wandb) > 0:
                    print("Login to wandb...")
                    import wandb
                    wandb.init(
                        project=args.wandb,
                        name=args.run_name + " " + args.my_timestamp,
                        config=args,
                        save_code=False,
                    )
                    trainer.my_wandb = wandb

    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        args = self.args
        if trainer.is_global_zero:  # logging
            t_now = time.time_ns()
            token_per_step = args.ctx_len * args.real_bsz
            real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
            kt_s = 0
            try:
                t_cost = (t_now - trainer.my_time_ns) / 1e9
                kt_s = token_per_step / t_cost / 1000
                self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
                self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
            except:
                pass
            trainer.my_time_ns = t_now
            trainer.my_loss = trainer.my_loss_all.float().mean().item()
            trainer.my_loss_sum += trainer.my_loss
            trainer.my_loss_count += 1
            trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
            self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
            self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
            # self.log("s", real_step, prog_bar=True, on_step=True)

            if len(args.wandb) > 0:
                lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
                if kt_s > 0:
                    lll["kt/s"] = kt_s
                trainer.my_wandb.log(lll, step=int(real_step))
            if args.magic_prime > 0:
                expand_factor = 2 if args.my_qa_mask > 0 else 1
                if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1 + int(args.my_random_steps):
                    to_save_dict = pl_module.state_dict()
                    my_save(
                        to_save_dict,
                        f"{args.proj_dir}/rwkv-final.pth",
                    )
                

    def on_train_epoch_start(self, trainer, pl_module):
        args = self.args
        dataset = trainer.train_dataloader.dataset.datasets
        assert "MyDataset" in str(dataset)
        dataset.global_rank = trainer.global_rank
        dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
        dataset.world_size = trainer.world_size
        # print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')

    def on_train_epoch_end(self, trainer, pl_module):
        args = self.args
        if trainer.is_global_zero:  # logging & save state_dict
            if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
                if args.data_type == 'wds_img':
                    raw_dict = pl_module.state_dict()
                    to_save_dict = {}
                    for k in raw_dict:
                        if k.startswith('encoder.') or k.startswith('decoder.'):
                            to_save_dict[k] = raw_dict[k]
                else:
                    to_save_dict = pl_module.state_dict()
                try:
                    my_save(
                        to_save_dict,
                        f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
                    )
                except Exception as e:
                    print('Error\n\n', e, '\n\n')
            trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
            trainer.my_log.flush()

            trainer.my_loss_sum = 0
            trainer.my_loss_count = 0


@rank_zero_only
def generate_init_weight(model, init_weight_name):
    mm = model.generate_init_weight()

    if model.args.my_pile_stage == 1:
        if len(model.args.load_model) > 0:
            print(f"Combine weights from {model.args.load_model}...")
            load_dict = torch.load(model.args.load_model, map_location="cpu")
            for k in load_dict:
                assert k in mm
                src = load_dict[k]
                try:
                    mm[k] = src.reshape(mm[k].shape)
                except:
                    tmp = mm[k].squeeze().clone()
                    print(k, src.shape, '-->', mm[k].shape)
                    ss = src.shape[0]
                    dd = tmp.shape[0]
                    for i in range(dd):
                        pos = i / dd * ss
                        if pos >= ss - 1:
                            tmp[i] = src[ss-1]
                        else:
                            p0 = int(math.floor(pos))
                            ii = pos - p0
                            tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
                    mm[k] = tmp.reshape(mm[k].shape)
                    sss = src.squeeze().float().cpu().numpy()
                    print(sss[:10], '...', sss[-10:])
                    mmm = mm[k].squeeze().float().cpu().numpy()
                    print(mmm[:10], '...', mmm[-10:])

    print(f"Save to {init_weight_name}...")
    torch.save(mm, init_weight_name)

    if model.args.my_pile_stage == 1:
        print("Done. Now go for stage 2.")
        exit(0)