Neural Networks Model
Browse files- Emotion_Classifier (1).ipynb +2233 -0
Emotion_Classifier (1).ipynb
ADDED
@@ -0,0 +1,2233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"machine_shape": "hm",
|
8 |
+
"gpuType": "T4"
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"gpuClass": "standard",
|
18 |
+
"accelerator": "GPU",
|
19 |
+
"widgets": {
|
20 |
+
"application/vnd.jupyter.widget-state+json": {
|
21 |
+
"8edc67e952f34a8f945e2db51f9425ee": {
|
22 |
+
"model_module": "@jupyter-widgets/controls",
|
23 |
+
"model_name": "VBoxModel",
|
24 |
+
"model_module_version": "1.5.0",
|
25 |
+
"state": {
|
26 |
+
"_dom_classes": [],
|
27 |
+
"_model_module": "@jupyter-widgets/controls",
|
28 |
+
"_model_module_version": "1.5.0",
|
29 |
+
"_model_name": "VBoxModel",
|
30 |
+
"_view_count": null,
|
31 |
+
"_view_module": "@jupyter-widgets/controls",
|
32 |
+
"_view_module_version": "1.5.0",
|
33 |
+
"_view_name": "VBoxView",
|
34 |
+
"box_style": "",
|
35 |
+
"children": [
|
36 |
+
"IPY_MODEL_080f20bc389f485eba6f710ad28a0360",
|
37 |
+
"IPY_MODEL_73aac851a8ae485dbcda59638e1113f6",
|
38 |
+
"IPY_MODEL_4b6cd0b9424c4577957a3e10a890fa91",
|
39 |
+
"IPY_MODEL_1fc62562be594225adf880f49e467fe4",
|
40 |
+
"IPY_MODEL_33ba82aa3ee748d29445c1da004e01b3"
|
41 |
+
],
|
42 |
+
"layout": "IPY_MODEL_44e15dc93ae64a6d972442e22c0cd2de"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"080f20bc389f485eba6f710ad28a0360": {
|
46 |
+
"model_module": "@jupyter-widgets/controls",
|
47 |
+
"model_name": "HTMLModel",
|
48 |
+
"model_module_version": "1.5.0",
|
49 |
+
"state": {
|
50 |
+
"_dom_classes": [],
|
51 |
+
"_model_module": "@jupyter-widgets/controls",
|
52 |
+
"_model_module_version": "1.5.0",
|
53 |
+
"_model_name": "HTMLModel",
|
54 |
+
"_view_count": null,
|
55 |
+
"_view_module": "@jupyter-widgets/controls",
|
56 |
+
"_view_module_version": "1.5.0",
|
57 |
+
"_view_name": "HTMLView",
|
58 |
+
"description": "",
|
59 |
+
"description_tooltip": null,
|
60 |
+
"layout": "IPY_MODEL_a880e3a9e7954c1f9d2f0ee8d85703e4",
|
61 |
+
"placeholder": "",
|
62 |
+
"style": "IPY_MODEL_ddd514ab790a4c5fa032822cb58f6609",
|
63 |
+
"value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"73aac851a8ae485dbcda59638e1113f6": {
|
67 |
+
"model_module": "@jupyter-widgets/controls",
|
68 |
+
"model_name": "PasswordModel",
|
69 |
+
"model_module_version": "1.5.0",
|
70 |
+
"state": {
|
71 |
+
"_dom_classes": [],
|
72 |
+
"_model_module": "@jupyter-widgets/controls",
|
73 |
+
"_model_module_version": "1.5.0",
|
74 |
+
"_model_name": "PasswordModel",
|
75 |
+
"_view_count": null,
|
76 |
+
"_view_module": "@jupyter-widgets/controls",
|
77 |
+
"_view_module_version": "1.5.0",
|
78 |
+
"_view_name": "PasswordView",
|
79 |
+
"continuous_update": true,
|
80 |
+
"description": "Token:",
|
81 |
+
"description_tooltip": null,
|
82 |
+
"disabled": false,
|
83 |
+
"layout": "IPY_MODEL_5ff4185688f646dc806f779490d32b37",
|
84 |
+
"placeholder": "",
|
85 |
+
"style": "IPY_MODEL_bedbd9c752d54e439583a6b276e9cb42",
|
86 |
+
"value": ""
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"4b6cd0b9424c4577957a3e10a890fa91": {
|
90 |
+
"model_module": "@jupyter-widgets/controls",
|
91 |
+
"model_name": "CheckboxModel",
|
92 |
+
"model_module_version": "1.5.0",
|
93 |
+
"state": {
|
94 |
+
"_dom_classes": [],
|
95 |
+
"_model_module": "@jupyter-widgets/controls",
|
96 |
+
"_model_module_version": "1.5.0",
|
97 |
+
"_model_name": "CheckboxModel",
|
98 |
+
"_view_count": null,
|
99 |
+
"_view_module": "@jupyter-widgets/controls",
|
100 |
+
"_view_module_version": "1.5.0",
|
101 |
+
"_view_name": "CheckboxView",
|
102 |
+
"description": "Add token as git credential?",
|
103 |
+
"description_tooltip": null,
|
104 |
+
"disabled": false,
|
105 |
+
"indent": true,
|
106 |
+
"layout": "IPY_MODEL_40222f6a62854865a8a24e3ed82708c9",
|
107 |
+
"style": "IPY_MODEL_562f64d325534570a7f2aee188b73363",
|
108 |
+
"value": true
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"1fc62562be594225adf880f49e467fe4": {
|
112 |
+
"model_module": "@jupyter-widgets/controls",
|
113 |
+
"model_name": "ButtonModel",
|
114 |
+
"model_module_version": "1.5.0",
|
115 |
+
"state": {
|
116 |
+
"_dom_classes": [],
|
117 |
+
"_model_module": "@jupyter-widgets/controls",
|
118 |
+
"_model_module_version": "1.5.0",
|
119 |
+
"_model_name": "ButtonModel",
|
120 |
+
"_view_count": null,
|
121 |
+
"_view_module": "@jupyter-widgets/controls",
|
122 |
+
"_view_module_version": "1.5.0",
|
123 |
+
"_view_name": "ButtonView",
|
124 |
+
"button_style": "",
|
125 |
+
"description": "Login",
|
126 |
+
"disabled": false,
|
127 |
+
"icon": "",
|
128 |
+
"layout": "IPY_MODEL_b19d32184744436ab999a0668bd79ef6",
|
129 |
+
"style": "IPY_MODEL_d0e7330628eb4f659478e335558d6345",
|
130 |
+
"tooltip": ""
|
131 |
+
}
|
132 |
+
},
|
133 |
+
"33ba82aa3ee748d29445c1da004e01b3": {
|
134 |
+
"model_module": "@jupyter-widgets/controls",
|
135 |
+
"model_name": "HTMLModel",
|
136 |
+
"model_module_version": "1.5.0",
|
137 |
+
"state": {
|
138 |
+
"_dom_classes": [],
|
139 |
+
"_model_module": "@jupyter-widgets/controls",
|
140 |
+
"_model_module_version": "1.5.0",
|
141 |
+
"_model_name": "HTMLModel",
|
142 |
+
"_view_count": null,
|
143 |
+
"_view_module": "@jupyter-widgets/controls",
|
144 |
+
"_view_module_version": "1.5.0",
|
145 |
+
"_view_name": "HTMLView",
|
146 |
+
"description": "",
|
147 |
+
"description_tooltip": null,
|
148 |
+
"layout": "IPY_MODEL_d7b27461e8074b51a5b92d819a953124",
|
149 |
+
"placeholder": "",
|
150 |
+
"style": "IPY_MODEL_7c25bcf4491a4333b99f58970ee52e16",
|
151 |
+
"value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"44e15dc93ae64a6d972442e22c0cd2de": {
|
155 |
+
"model_module": "@jupyter-widgets/base",
|
156 |
+
"model_name": "LayoutModel",
|
157 |
+
"model_module_version": "1.2.0",
|
158 |
+
"state": {
|
159 |
+
"_model_module": "@jupyter-widgets/base",
|
160 |
+
"_model_module_version": "1.2.0",
|
161 |
+
"_model_name": "LayoutModel",
|
162 |
+
"_view_count": null,
|
163 |
+
"_view_module": "@jupyter-widgets/base",
|
164 |
+
"_view_module_version": "1.2.0",
|
165 |
+
"_view_name": "LayoutView",
|
166 |
+
"align_content": null,
|
167 |
+
"align_items": "center",
|
168 |
+
"align_self": null,
|
169 |
+
"border": null,
|
170 |
+
"bottom": null,
|
171 |
+
"display": "flex",
|
172 |
+
"flex": null,
|
173 |
+
"flex_flow": "column",
|
174 |
+
"grid_area": null,
|
175 |
+
"grid_auto_columns": null,
|
176 |
+
"grid_auto_flow": null,
|
177 |
+
"grid_auto_rows": null,
|
178 |
+
"grid_column": null,
|
179 |
+
"grid_gap": null,
|
180 |
+
"grid_row": null,
|
181 |
+
"grid_template_areas": null,
|
182 |
+
"grid_template_columns": null,
|
183 |
+
"grid_template_rows": null,
|
184 |
+
"height": null,
|
185 |
+
"justify_content": null,
|
186 |
+
"justify_items": null,
|
187 |
+
"left": null,
|
188 |
+
"margin": null,
|
189 |
+
"max_height": null,
|
190 |
+
"max_width": null,
|
191 |
+
"min_height": null,
|
192 |
+
"min_width": null,
|
193 |
+
"object_fit": null,
|
194 |
+
"object_position": null,
|
195 |
+
"order": null,
|
196 |
+
"overflow": null,
|
197 |
+
"overflow_x": null,
|
198 |
+
"overflow_y": null,
|
199 |
+
"padding": null,
|
200 |
+
"right": null,
|
201 |
+
"top": null,
|
202 |
+
"visibility": null,
|
203 |
+
"width": "50%"
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"a880e3a9e7954c1f9d2f0ee8d85703e4": {
|
207 |
+
"model_module": "@jupyter-widgets/base",
|
208 |
+
"model_name": "LayoutModel",
|
209 |
+
"model_module_version": "1.2.0",
|
210 |
+
"state": {
|
211 |
+
"_model_module": "@jupyter-widgets/base",
|
212 |
+
"_model_module_version": "1.2.0",
|
213 |
+
"_model_name": "LayoutModel",
|
214 |
+
"_view_count": null,
|
215 |
+
"_view_module": "@jupyter-widgets/base",
|
216 |
+
"_view_module_version": "1.2.0",
|
217 |
+
"_view_name": "LayoutView",
|
218 |
+
"align_content": null,
|
219 |
+
"align_items": null,
|
220 |
+
"align_self": null,
|
221 |
+
"border": null,
|
222 |
+
"bottom": null,
|
223 |
+
"display": null,
|
224 |
+
"flex": null,
|
225 |
+
"flex_flow": null,
|
226 |
+
"grid_area": null,
|
227 |
+
"grid_auto_columns": null,
|
228 |
+
"grid_auto_flow": null,
|
229 |
+
"grid_auto_rows": null,
|
230 |
+
"grid_column": null,
|
231 |
+
"grid_gap": null,
|
232 |
+
"grid_row": null,
|
233 |
+
"grid_template_areas": null,
|
234 |
+
"grid_template_columns": null,
|
235 |
+
"grid_template_rows": null,
|
236 |
+
"height": null,
|
237 |
+
"justify_content": null,
|
238 |
+
"justify_items": null,
|
239 |
+
"left": null,
|
240 |
+
"margin": null,
|
241 |
+
"max_height": null,
|
242 |
+
"max_width": null,
|
243 |
+
"min_height": null,
|
244 |
+
"min_width": null,
|
245 |
+
"object_fit": null,
|
246 |
+
"object_position": null,
|
247 |
+
"order": null,
|
248 |
+
"overflow": null,
|
249 |
+
"overflow_x": null,
|
250 |
+
"overflow_y": null,
|
251 |
+
"padding": null,
|
252 |
+
"right": null,
|
253 |
+
"top": null,
|
254 |
+
"visibility": null,
|
255 |
+
"width": null
|
256 |
+
}
|
257 |
+
},
|
258 |
+
"ddd514ab790a4c5fa032822cb58f6609": {
|
259 |
+
"model_module": "@jupyter-widgets/controls",
|
260 |
+
"model_name": "DescriptionStyleModel",
|
261 |
+
"model_module_version": "1.5.0",
|
262 |
+
"state": {
|
263 |
+
"_model_module": "@jupyter-widgets/controls",
|
264 |
+
"_model_module_version": "1.5.0",
|
265 |
+
"_model_name": "DescriptionStyleModel",
|
266 |
+
"_view_count": null,
|
267 |
+
"_view_module": "@jupyter-widgets/base",
|
268 |
+
"_view_module_version": "1.2.0",
|
269 |
+
"_view_name": "StyleView",
|
270 |
+
"description_width": ""
|
271 |
+
}
|
272 |
+
},
|
273 |
+
"5ff4185688f646dc806f779490d32b37": {
|
274 |
+
"model_module": "@jupyter-widgets/base",
|
275 |
+
"model_name": "LayoutModel",
|
276 |
+
"model_module_version": "1.2.0",
|
277 |
+
"state": {
|
278 |
+
"_model_module": "@jupyter-widgets/base",
|
279 |
+
"_model_module_version": "1.2.0",
|
280 |
+
"_model_name": "LayoutModel",
|
281 |
+
"_view_count": null,
|
282 |
+
"_view_module": "@jupyter-widgets/base",
|
283 |
+
"_view_module_version": "1.2.0",
|
284 |
+
"_view_name": "LayoutView",
|
285 |
+
"align_content": null,
|
286 |
+
"align_items": null,
|
287 |
+
"align_self": null,
|
288 |
+
"border": null,
|
289 |
+
"bottom": null,
|
290 |
+
"display": null,
|
291 |
+
"flex": null,
|
292 |
+
"flex_flow": null,
|
293 |
+
"grid_area": null,
|
294 |
+
"grid_auto_columns": null,
|
295 |
+
"grid_auto_flow": null,
|
296 |
+
"grid_auto_rows": null,
|
297 |
+
"grid_column": null,
|
298 |
+
"grid_gap": null,
|
299 |
+
"grid_row": null,
|
300 |
+
"grid_template_areas": null,
|
301 |
+
"grid_template_columns": null,
|
302 |
+
"grid_template_rows": null,
|
303 |
+
"height": null,
|
304 |
+
"justify_content": null,
|
305 |
+
"justify_items": null,
|
306 |
+
"left": null,
|
307 |
+
"margin": null,
|
308 |
+
"max_height": null,
|
309 |
+
"max_width": null,
|
310 |
+
"min_height": null,
|
311 |
+
"min_width": null,
|
312 |
+
"object_fit": null,
|
313 |
+
"object_position": null,
|
314 |
+
"order": null,
|
315 |
+
"overflow": null,
|
316 |
+
"overflow_x": null,
|
317 |
+
"overflow_y": null,
|
318 |
+
"padding": null,
|
319 |
+
"right": null,
|
320 |
+
"top": null,
|
321 |
+
"visibility": null,
|
322 |
+
"width": null
|
323 |
+
}
|
324 |
+
},
|
325 |
+
"bedbd9c752d54e439583a6b276e9cb42": {
|
326 |
+
"model_module": "@jupyter-widgets/controls",
|
327 |
+
"model_name": "DescriptionStyleModel",
|
328 |
+
"model_module_version": "1.5.0",
|
329 |
+
"state": {
|
330 |
+
"_model_module": "@jupyter-widgets/controls",
|
331 |
+
"_model_module_version": "1.5.0",
|
332 |
+
"_model_name": "DescriptionStyleModel",
|
333 |
+
"_view_count": null,
|
334 |
+
"_view_module": "@jupyter-widgets/base",
|
335 |
+
"_view_module_version": "1.2.0",
|
336 |
+
"_view_name": "StyleView",
|
337 |
+
"description_width": ""
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"40222f6a62854865a8a24e3ed82708c9": {
|
341 |
+
"model_module": "@jupyter-widgets/base",
|
342 |
+
"model_name": "LayoutModel",
|
343 |
+
"model_module_version": "1.2.0",
|
344 |
+
"state": {
|
345 |
+
"_model_module": "@jupyter-widgets/base",
|
346 |
+
"_model_module_version": "1.2.0",
|
347 |
+
"_model_name": "LayoutModel",
|
348 |
+
"_view_count": null,
|
349 |
+
"_view_module": "@jupyter-widgets/base",
|
350 |
+
"_view_module_version": "1.2.0",
|
351 |
+
"_view_name": "LayoutView",
|
352 |
+
"align_content": null,
|
353 |
+
"align_items": null,
|
354 |
+
"align_self": null,
|
355 |
+
"border": null,
|
356 |
+
"bottom": null,
|
357 |
+
"display": null,
|
358 |
+
"flex": null,
|
359 |
+
"flex_flow": null,
|
360 |
+
"grid_area": null,
|
361 |
+
"grid_auto_columns": null,
|
362 |
+
"grid_auto_flow": null,
|
363 |
+
"grid_auto_rows": null,
|
364 |
+
"grid_column": null,
|
365 |
+
"grid_gap": null,
|
366 |
+
"grid_row": null,
|
367 |
+
"grid_template_areas": null,
|
368 |
+
"grid_template_columns": null,
|
369 |
+
"grid_template_rows": null,
|
370 |
+
"height": null,
|
371 |
+
"justify_content": null,
|
372 |
+
"justify_items": null,
|
373 |
+
"left": null,
|
374 |
+
"margin": null,
|
375 |
+
"max_height": null,
|
376 |
+
"max_width": null,
|
377 |
+
"min_height": null,
|
378 |
+
"min_width": null,
|
379 |
+
"object_fit": null,
|
380 |
+
"object_position": null,
|
381 |
+
"order": null,
|
382 |
+
"overflow": null,
|
383 |
+
"overflow_x": null,
|
384 |
+
"overflow_y": null,
|
385 |
+
"padding": null,
|
386 |
+
"right": null,
|
387 |
+
"top": null,
|
388 |
+
"visibility": null,
|
389 |
+
"width": null
|
390 |
+
}
|
391 |
+
},
|
392 |
+
"562f64d325534570a7f2aee188b73363": {
|
393 |
+
"model_module": "@jupyter-widgets/controls",
|
394 |
+
"model_name": "DescriptionStyleModel",
|
395 |
+
"model_module_version": "1.5.0",
|
396 |
+
"state": {
|
397 |
+
"_model_module": "@jupyter-widgets/controls",
|
398 |
+
"_model_module_version": "1.5.0",
|
399 |
+
"_model_name": "DescriptionStyleModel",
|
400 |
+
"_view_count": null,
|
401 |
+
"_view_module": "@jupyter-widgets/base",
|
402 |
+
"_view_module_version": "1.2.0",
|
403 |
+
"_view_name": "StyleView",
|
404 |
+
"description_width": ""
|
405 |
+
}
|
406 |
+
},
|
407 |
+
"b19d32184744436ab999a0668bd79ef6": {
|
408 |
+
"model_module": "@jupyter-widgets/base",
|
409 |
+
"model_name": "LayoutModel",
|
410 |
+
"model_module_version": "1.2.0",
|
411 |
+
"state": {
|
412 |
+
"_model_module": "@jupyter-widgets/base",
|
413 |
+
"_model_module_version": "1.2.0",
|
414 |
+
"_model_name": "LayoutModel",
|
415 |
+
"_view_count": null,
|
416 |
+
"_view_module": "@jupyter-widgets/base",
|
417 |
+
"_view_module_version": "1.2.0",
|
418 |
+
"_view_name": "LayoutView",
|
419 |
+
"align_content": null,
|
420 |
+
"align_items": null,
|
421 |
+
"align_self": null,
|
422 |
+
"border": null,
|
423 |
+
"bottom": null,
|
424 |
+
"display": null,
|
425 |
+
"flex": null,
|
426 |
+
"flex_flow": null,
|
427 |
+
"grid_area": null,
|
428 |
+
"grid_auto_columns": null,
|
429 |
+
"grid_auto_flow": null,
|
430 |
+
"grid_auto_rows": null,
|
431 |
+
"grid_column": null,
|
432 |
+
"grid_gap": null,
|
433 |
+
"grid_row": null,
|
434 |
+
"grid_template_areas": null,
|
435 |
+
"grid_template_columns": null,
|
436 |
+
"grid_template_rows": null,
|
437 |
+
"height": null,
|
438 |
+
"justify_content": null,
|
439 |
+
"justify_items": null,
|
440 |
+
"left": null,
|
441 |
+
"margin": null,
|
442 |
+
"max_height": null,
|
443 |
+
"max_width": null,
|
444 |
+
"min_height": null,
|
445 |
+
"min_width": null,
|
446 |
+
"object_fit": null,
|
447 |
+
"object_position": null,
|
448 |
+
"order": null,
|
449 |
+
"overflow": null,
|
450 |
+
"overflow_x": null,
|
451 |
+
"overflow_y": null,
|
452 |
+
"padding": null,
|
453 |
+
"right": null,
|
454 |
+
"top": null,
|
455 |
+
"visibility": null,
|
456 |
+
"width": null
|
457 |
+
}
|
458 |
+
},
|
459 |
+
"d0e7330628eb4f659478e335558d6345": {
|
460 |
+
"model_module": "@jupyter-widgets/controls",
|
461 |
+
"model_name": "ButtonStyleModel",
|
462 |
+
"model_module_version": "1.5.0",
|
463 |
+
"state": {
|
464 |
+
"_model_module": "@jupyter-widgets/controls",
|
465 |
+
"_model_module_version": "1.5.0",
|
466 |
+
"_model_name": "ButtonStyleModel",
|
467 |
+
"_view_count": null,
|
468 |
+
"_view_module": "@jupyter-widgets/base",
|
469 |
+
"_view_module_version": "1.2.0",
|
470 |
+
"_view_name": "StyleView",
|
471 |
+
"button_color": null,
|
472 |
+
"font_weight": ""
|
473 |
+
}
|
474 |
+
},
|
475 |
+
"d7b27461e8074b51a5b92d819a953124": {
|
476 |
+
"model_module": "@jupyter-widgets/base",
|
477 |
+
"model_name": "LayoutModel",
|
478 |
+
"model_module_version": "1.2.0",
|
479 |
+
"state": {
|
480 |
+
"_model_module": "@jupyter-widgets/base",
|
481 |
+
"_model_module_version": "1.2.0",
|
482 |
+
"_model_name": "LayoutModel",
|
483 |
+
"_view_count": null,
|
484 |
+
"_view_module": "@jupyter-widgets/base",
|
485 |
+
"_view_module_version": "1.2.0",
|
486 |
+
"_view_name": "LayoutView",
|
487 |
+
"align_content": null,
|
488 |
+
"align_items": null,
|
489 |
+
"align_self": null,
|
490 |
+
"border": null,
|
491 |
+
"bottom": null,
|
492 |
+
"display": null,
|
493 |
+
"flex": null,
|
494 |
+
"flex_flow": null,
|
495 |
+
"grid_area": null,
|
496 |
+
"grid_auto_columns": null,
|
497 |
+
"grid_auto_flow": null,
|
498 |
+
"grid_auto_rows": null,
|
499 |
+
"grid_column": null,
|
500 |
+
"grid_gap": null,
|
501 |
+
"grid_row": null,
|
502 |
+
"grid_template_areas": null,
|
503 |
+
"grid_template_columns": null,
|
504 |
+
"grid_template_rows": null,
|
505 |
+
"height": null,
|
506 |
+
"justify_content": null,
|
507 |
+
"justify_items": null,
|
508 |
+
"left": null,
|
509 |
+
"margin": null,
|
510 |
+
"max_height": null,
|
511 |
+
"max_width": null,
|
512 |
+
"min_height": null,
|
513 |
+
"min_width": null,
|
514 |
+
"object_fit": null,
|
515 |
+
"object_position": null,
|
516 |
+
"order": null,
|
517 |
+
"overflow": null,
|
518 |
+
"overflow_x": null,
|
519 |
+
"overflow_y": null,
|
520 |
+
"padding": null,
|
521 |
+
"right": null,
|
522 |
+
"top": null,
|
523 |
+
"visibility": null,
|
524 |
+
"width": null
|
525 |
+
}
|
526 |
+
},
|
527 |
+
"7c25bcf4491a4333b99f58970ee52e16": {
|
528 |
+
"model_module": "@jupyter-widgets/controls",
|
529 |
+
"model_name": "DescriptionStyleModel",
|
530 |
+
"model_module_version": "1.5.0",
|
531 |
+
"state": {
|
532 |
+
"_model_module": "@jupyter-widgets/controls",
|
533 |
+
"_model_module_version": "1.5.0",
|
534 |
+
"_model_name": "DescriptionStyleModel",
|
535 |
+
"_view_count": null,
|
536 |
+
"_view_module": "@jupyter-widgets/base",
|
537 |
+
"_view_module_version": "1.2.0",
|
538 |
+
"_view_name": "StyleView",
|
539 |
+
"description_width": ""
|
540 |
+
}
|
541 |
+
},
|
542 |
+
"a965aa730e164b249ff040457c944d94": {
|
543 |
+
"model_module": "@jupyter-widgets/controls",
|
544 |
+
"model_name": "HBoxModel",
|
545 |
+
"model_module_version": "1.5.0",
|
546 |
+
"state": {
|
547 |
+
"_dom_classes": [],
|
548 |
+
"_model_module": "@jupyter-widgets/controls",
|
549 |
+
"_model_module_version": "1.5.0",
|
550 |
+
"_model_name": "HBoxModel",
|
551 |
+
"_view_count": null,
|
552 |
+
"_view_module": "@jupyter-widgets/controls",
|
553 |
+
"_view_module_version": "1.5.0",
|
554 |
+
"_view_name": "HBoxView",
|
555 |
+
"box_style": "",
|
556 |
+
"children": [
|
557 |
+
"IPY_MODEL_cdefc2d658bc4bd3ba8b3b4d0affd263",
|
558 |
+
"IPY_MODEL_f41f320a42c54f90996b54af83689aff",
|
559 |
+
"IPY_MODEL_833a251db60140a598b9b4d28583271b"
|
560 |
+
],
|
561 |
+
"layout": "IPY_MODEL_b157a9c50b834c24acc1445c803c670c"
|
562 |
+
}
|
563 |
+
},
|
564 |
+
"cdefc2d658bc4bd3ba8b3b4d0affd263": {
|
565 |
+
"model_module": "@jupyter-widgets/controls",
|
566 |
+
"model_name": "HTMLModel",
|
567 |
+
"model_module_version": "1.5.0",
|
568 |
+
"state": {
|
569 |
+
"_dom_classes": [],
|
570 |
+
"_model_module": "@jupyter-widgets/controls",
|
571 |
+
"_model_module_version": "1.5.0",
|
572 |
+
"_model_name": "HTMLModel",
|
573 |
+
"_view_count": null,
|
574 |
+
"_view_module": "@jupyter-widgets/controls",
|
575 |
+
"_view_module_version": "1.5.0",
|
576 |
+
"_view_name": "HTMLView",
|
577 |
+
"description": "",
|
578 |
+
"description_tooltip": null,
|
579 |
+
"layout": "IPY_MODEL_64deb634ee7249ad8ed9bd93c1979459",
|
580 |
+
"placeholder": "",
|
581 |
+
"style": "IPY_MODEL_b41049a008604c1ab7bdb4646092628d",
|
582 |
+
"value": "Upload file tf_model.h5: 100%"
|
583 |
+
}
|
584 |
+
},
|
585 |
+
"f41f320a42c54f90996b54af83689aff": {
|
586 |
+
"model_module": "@jupyter-widgets/controls",
|
587 |
+
"model_name": "FloatProgressModel",
|
588 |
+
"model_module_version": "1.5.0",
|
589 |
+
"state": {
|
590 |
+
"_dom_classes": [],
|
591 |
+
"_model_module": "@jupyter-widgets/controls",
|
592 |
+
"_model_module_version": "1.5.0",
|
593 |
+
"_model_name": "FloatProgressModel",
|
594 |
+
"_view_count": null,
|
595 |
+
"_view_module": "@jupyter-widgets/controls",
|
596 |
+
"_view_module_version": "1.5.0",
|
597 |
+
"_view_name": "ProgressView",
|
598 |
+
"bar_style": "success",
|
599 |
+
"description": "",
|
600 |
+
"description_tooltip": null,
|
601 |
+
"layout": "IPY_MODEL_6d971fa517aa4c1295522279f29f0258",
|
602 |
+
"max": 343504568,
|
603 |
+
"min": 0,
|
604 |
+
"orientation": "horizontal",
|
605 |
+
"style": "IPY_MODEL_4f316fbfcf3644cd84a3f146265c9ba2",
|
606 |
+
"value": 343504568
|
607 |
+
}
|
608 |
+
},
|
609 |
+
"833a251db60140a598b9b4d28583271b": {
|
610 |
+
"model_module": "@jupyter-widgets/controls",
|
611 |
+
"model_name": "HTMLModel",
|
612 |
+
"model_module_version": "1.5.0",
|
613 |
+
"state": {
|
614 |
+
"_dom_classes": [],
|
615 |
+
"_model_module": "@jupyter-widgets/controls",
|
616 |
+
"_model_module_version": "1.5.0",
|
617 |
+
"_model_name": "HTMLModel",
|
618 |
+
"_view_count": null,
|
619 |
+
"_view_module": "@jupyter-widgets/controls",
|
620 |
+
"_view_module_version": "1.5.0",
|
621 |
+
"_view_name": "HTMLView",
|
622 |
+
"description": "",
|
623 |
+
"description_tooltip": null,
|
624 |
+
"layout": "IPY_MODEL_06067b563aa54cc386e4954a9702042f",
|
625 |
+
"placeholder": "",
|
626 |
+
"style": "IPY_MODEL_e2dca77a089e43caa918174707165b56",
|
627 |
+
"value": " 328M/328M [00:08<00:00, 53.7MB/s]"
|
628 |
+
}
|
629 |
+
},
|
630 |
+
"b157a9c50b834c24acc1445c803c670c": {
|
631 |
+
"model_module": "@jupyter-widgets/base",
|
632 |
+
"model_name": "LayoutModel",
|
633 |
+
"model_module_version": "1.2.0",
|
634 |
+
"state": {
|
635 |
+
"_model_module": "@jupyter-widgets/base",
|
636 |
+
"_model_module_version": "1.2.0",
|
637 |
+
"_model_name": "LayoutModel",
|
638 |
+
"_view_count": null,
|
639 |
+
"_view_module": "@jupyter-widgets/base",
|
640 |
+
"_view_module_version": "1.2.0",
|
641 |
+
"_view_name": "LayoutView",
|
642 |
+
"align_content": null,
|
643 |
+
"align_items": null,
|
644 |
+
"align_self": null,
|
645 |
+
"border": null,
|
646 |
+
"bottom": null,
|
647 |
+
"display": null,
|
648 |
+
"flex": null,
|
649 |
+
"flex_flow": null,
|
650 |
+
"grid_area": null,
|
651 |
+
"grid_auto_columns": null,
|
652 |
+
"grid_auto_flow": null,
|
653 |
+
"grid_auto_rows": null,
|
654 |
+
"grid_column": null,
|
655 |
+
"grid_gap": null,
|
656 |
+
"grid_row": null,
|
657 |
+
"grid_template_areas": null,
|
658 |
+
"grid_template_columns": null,
|
659 |
+
"grid_template_rows": null,
|
660 |
+
"height": null,
|
661 |
+
"justify_content": null,
|
662 |
+
"justify_items": null,
|
663 |
+
"left": null,
|
664 |
+
"margin": null,
|
665 |
+
"max_height": null,
|
666 |
+
"max_width": null,
|
667 |
+
"min_height": null,
|
668 |
+
"min_width": null,
|
669 |
+
"object_fit": null,
|
670 |
+
"object_position": null,
|
671 |
+
"order": null,
|
672 |
+
"overflow": null,
|
673 |
+
"overflow_x": null,
|
674 |
+
"overflow_y": null,
|
675 |
+
"padding": null,
|
676 |
+
"right": null,
|
677 |
+
"top": null,
|
678 |
+
"visibility": null,
|
679 |
+
"width": null
|
680 |
+
}
|
681 |
+
},
|
682 |
+
"64deb634ee7249ad8ed9bd93c1979459": {
|
683 |
+
"model_module": "@jupyter-widgets/base",
|
684 |
+
"model_name": "LayoutModel",
|
685 |
+
"model_module_version": "1.2.0",
|
686 |
+
"state": {
|
687 |
+
"_model_module": "@jupyter-widgets/base",
|
688 |
+
"_model_module_version": "1.2.0",
|
689 |
+
"_model_name": "LayoutModel",
|
690 |
+
"_view_count": null,
|
691 |
+
"_view_module": "@jupyter-widgets/base",
|
692 |
+
"_view_module_version": "1.2.0",
|
693 |
+
"_view_name": "LayoutView",
|
694 |
+
"align_content": null,
|
695 |
+
"align_items": null,
|
696 |
+
"align_self": null,
|
697 |
+
"border": null,
|
698 |
+
"bottom": null,
|
699 |
+
"display": null,
|
700 |
+
"flex": null,
|
701 |
+
"flex_flow": null,
|
702 |
+
"grid_area": null,
|
703 |
+
"grid_auto_columns": null,
|
704 |
+
"grid_auto_flow": null,
|
705 |
+
"grid_auto_rows": null,
|
706 |
+
"grid_column": null,
|
707 |
+
"grid_gap": null,
|
708 |
+
"grid_row": null,
|
709 |
+
"grid_template_areas": null,
|
710 |
+
"grid_template_columns": null,
|
711 |
+
"grid_template_rows": null,
|
712 |
+
"height": null,
|
713 |
+
"justify_content": null,
|
714 |
+
"justify_items": null,
|
715 |
+
"left": null,
|
716 |
+
"margin": null,
|
717 |
+
"max_height": null,
|
718 |
+
"max_width": null,
|
719 |
+
"min_height": null,
|
720 |
+
"min_width": null,
|
721 |
+
"object_fit": null,
|
722 |
+
"object_position": null,
|
723 |
+
"order": null,
|
724 |
+
"overflow": null,
|
725 |
+
"overflow_x": null,
|
726 |
+
"overflow_y": null,
|
727 |
+
"padding": null,
|
728 |
+
"right": null,
|
729 |
+
"top": null,
|
730 |
+
"visibility": null,
|
731 |
+
"width": null
|
732 |
+
}
|
733 |
+
},
|
734 |
+
"b41049a008604c1ab7bdb4646092628d": {
|
735 |
+
"model_module": "@jupyter-widgets/controls",
|
736 |
+
"model_name": "DescriptionStyleModel",
|
737 |
+
"model_module_version": "1.5.0",
|
738 |
+
"state": {
|
739 |
+
"_model_module": "@jupyter-widgets/controls",
|
740 |
+
"_model_module_version": "1.5.0",
|
741 |
+
"_model_name": "DescriptionStyleModel",
|
742 |
+
"_view_count": null,
|
743 |
+
"_view_module": "@jupyter-widgets/base",
|
744 |
+
"_view_module_version": "1.2.0",
|
745 |
+
"_view_name": "StyleView",
|
746 |
+
"description_width": ""
|
747 |
+
}
|
748 |
+
},
|
749 |
+
"6d971fa517aa4c1295522279f29f0258": {
|
750 |
+
"model_module": "@jupyter-widgets/base",
|
751 |
+
"model_name": "LayoutModel",
|
752 |
+
"model_module_version": "1.2.0",
|
753 |
+
"state": {
|
754 |
+
"_model_module": "@jupyter-widgets/base",
|
755 |
+
"_model_module_version": "1.2.0",
|
756 |
+
"_model_name": "LayoutModel",
|
757 |
+
"_view_count": null,
|
758 |
+
"_view_module": "@jupyter-widgets/base",
|
759 |
+
"_view_module_version": "1.2.0",
|
760 |
+
"_view_name": "LayoutView",
|
761 |
+
"align_content": null,
|
762 |
+
"align_items": null,
|
763 |
+
"align_self": null,
|
764 |
+
"border": null,
|
765 |
+
"bottom": null,
|
766 |
+
"display": null,
|
767 |
+
"flex": null,
|
768 |
+
"flex_flow": null,
|
769 |
+
"grid_area": null,
|
770 |
+
"grid_auto_columns": null,
|
771 |
+
"grid_auto_flow": null,
|
772 |
+
"grid_auto_rows": null,
|
773 |
+
"grid_column": null,
|
774 |
+
"grid_gap": null,
|
775 |
+
"grid_row": null,
|
776 |
+
"grid_template_areas": null,
|
777 |
+
"grid_template_columns": null,
|
778 |
+
"grid_template_rows": null,
|
779 |
+
"height": null,
|
780 |
+
"justify_content": null,
|
781 |
+
"justify_items": null,
|
782 |
+
"left": null,
|
783 |
+
"margin": null,
|
784 |
+
"max_height": null,
|
785 |
+
"max_width": null,
|
786 |
+
"min_height": null,
|
787 |
+
"min_width": null,
|
788 |
+
"object_fit": null,
|
789 |
+
"object_position": null,
|
790 |
+
"order": null,
|
791 |
+
"overflow": null,
|
792 |
+
"overflow_x": null,
|
793 |
+
"overflow_y": null,
|
794 |
+
"padding": null,
|
795 |
+
"right": null,
|
796 |
+
"top": null,
|
797 |
+
"visibility": null,
|
798 |
+
"width": null
|
799 |
+
}
|
800 |
+
},
|
801 |
+
"4f316fbfcf3644cd84a3f146265c9ba2": {
|
802 |
+
"model_module": "@jupyter-widgets/controls",
|
803 |
+
"model_name": "ProgressStyleModel",
|
804 |
+
"model_module_version": "1.5.0",
|
805 |
+
"state": {
|
806 |
+
"_model_module": "@jupyter-widgets/controls",
|
807 |
+
"_model_module_version": "1.5.0",
|
808 |
+
"_model_name": "ProgressStyleModel",
|
809 |
+
"_view_count": null,
|
810 |
+
"_view_module": "@jupyter-widgets/base",
|
811 |
+
"_view_module_version": "1.2.0",
|
812 |
+
"_view_name": "StyleView",
|
813 |
+
"bar_color": null,
|
814 |
+
"description_width": ""
|
815 |
+
}
|
816 |
+
},
|
817 |
+
"06067b563aa54cc386e4954a9702042f": {
|
818 |
+
"model_module": "@jupyter-widgets/base",
|
819 |
+
"model_name": "LayoutModel",
|
820 |
+
"model_module_version": "1.2.0",
|
821 |
+
"state": {
|
822 |
+
"_model_module": "@jupyter-widgets/base",
|
823 |
+
"_model_module_version": "1.2.0",
|
824 |
+
"_model_name": "LayoutModel",
|
825 |
+
"_view_count": null,
|
826 |
+
"_view_module": "@jupyter-widgets/base",
|
827 |
+
"_view_module_version": "1.2.0",
|
828 |
+
"_view_name": "LayoutView",
|
829 |
+
"align_content": null,
|
830 |
+
"align_items": null,
|
831 |
+
"align_self": null,
|
832 |
+
"border": null,
|
833 |
+
"bottom": null,
|
834 |
+
"display": null,
|
835 |
+
"flex": null,
|
836 |
+
"flex_flow": null,
|
837 |
+
"grid_area": null,
|
838 |
+
"grid_auto_columns": null,
|
839 |
+
"grid_auto_flow": null,
|
840 |
+
"grid_auto_rows": null,
|
841 |
+
"grid_column": null,
|
842 |
+
"grid_gap": null,
|
843 |
+
"grid_row": null,
|
844 |
+
"grid_template_areas": null,
|
845 |
+
"grid_template_columns": null,
|
846 |
+
"grid_template_rows": null,
|
847 |
+
"height": null,
|
848 |
+
"justify_content": null,
|
849 |
+
"justify_items": null,
|
850 |
+
"left": null,
|
851 |
+
"margin": null,
|
852 |
+
"max_height": null,
|
853 |
+
"max_width": null,
|
854 |
+
"min_height": null,
|
855 |
+
"min_width": null,
|
856 |
+
"object_fit": null,
|
857 |
+
"object_position": null,
|
858 |
+
"order": null,
|
859 |
+
"overflow": null,
|
860 |
+
"overflow_x": null,
|
861 |
+
"overflow_y": null,
|
862 |
+
"padding": null,
|
863 |
+
"right": null,
|
864 |
+
"top": null,
|
865 |
+
"visibility": null,
|
866 |
+
"width": null
|
867 |
+
}
|
868 |
+
},
|
869 |
+
"e2dca77a089e43caa918174707165b56": {
|
870 |
+
"model_module": "@jupyter-widgets/controls",
|
871 |
+
"model_name": "DescriptionStyleModel",
|
872 |
+
"model_module_version": "1.5.0",
|
873 |
+
"state": {
|
874 |
+
"_model_module": "@jupyter-widgets/controls",
|
875 |
+
"_model_module_version": "1.5.0",
|
876 |
+
"_model_name": "DescriptionStyleModel",
|
877 |
+
"_view_count": null,
|
878 |
+
"_view_module": "@jupyter-widgets/base",
|
879 |
+
"_view_module_version": "1.2.0",
|
880 |
+
"_view_name": "StyleView",
|
881 |
+
"description_width": ""
|
882 |
+
}
|
883 |
+
},
|
884 |
+
"75599d75d500474db4e9ca8801af0ac6": {
|
885 |
+
"model_module": "@jupyter-widgets/controls",
|
886 |
+
"model_name": "HBoxModel",
|
887 |
+
"model_module_version": "1.5.0",
|
888 |
+
"state": {
|
889 |
+
"_dom_classes": [],
|
890 |
+
"_model_module": "@jupyter-widgets/controls",
|
891 |
+
"_model_module_version": "1.5.0",
|
892 |
+
"_model_name": "HBoxModel",
|
893 |
+
"_view_count": null,
|
894 |
+
"_view_module": "@jupyter-widgets/controls",
|
895 |
+
"_view_module_version": "1.5.0",
|
896 |
+
"_view_name": "HBoxView",
|
897 |
+
"box_style": "",
|
898 |
+
"children": [
|
899 |
+
"IPY_MODEL_5d8c864d082047b2a3b180985ae0b698",
|
900 |
+
"IPY_MODEL_502dd70810054869bb01aae69ab2431d",
|
901 |
+
"IPY_MODEL_53ff5a46800543d7a2e6ed532e0085eb"
|
902 |
+
],
|
903 |
+
"layout": "IPY_MODEL_8a3110bdb7844528a867a3f2d0daf028"
|
904 |
+
}
|
905 |
+
},
|
906 |
+
"5d8c864d082047b2a3b180985ae0b698": {
|
907 |
+
"model_module": "@jupyter-widgets/controls",
|
908 |
+
"model_name": "HTMLModel",
|
909 |
+
"model_module_version": "1.5.0",
|
910 |
+
"state": {
|
911 |
+
"_dom_classes": [],
|
912 |
+
"_model_module": "@jupyter-widgets/controls",
|
913 |
+
"_model_module_version": "1.5.0",
|
914 |
+
"_model_name": "HTMLModel",
|
915 |
+
"_view_count": null,
|
916 |
+
"_view_module": "@jupyter-widgets/controls",
|
917 |
+
"_view_module_version": "1.5.0",
|
918 |
+
"_view_name": "HTMLView",
|
919 |
+
"description": "",
|
920 |
+
"description_tooltip": null,
|
921 |
+
"layout": "IPY_MODEL_dbceb3e2a8b144bd8a899e7778b9fb67",
|
922 |
+
"placeholder": "",
|
923 |
+
"style": "IPY_MODEL_dc6982a803d34c2b9366323f44cf0ef7",
|
924 |
+
"value": "Downloading tf_model.h5: 100%"
|
925 |
+
}
|
926 |
+
},
|
927 |
+
"502dd70810054869bb01aae69ab2431d": {
|
928 |
+
"model_module": "@jupyter-widgets/controls",
|
929 |
+
"model_name": "FloatProgressModel",
|
930 |
+
"model_module_version": "1.5.0",
|
931 |
+
"state": {
|
932 |
+
"_dom_classes": [],
|
933 |
+
"_model_module": "@jupyter-widgets/controls",
|
934 |
+
"_model_module_version": "1.5.0",
|
935 |
+
"_model_name": "FloatProgressModel",
|
936 |
+
"_view_count": null,
|
937 |
+
"_view_module": "@jupyter-widgets/controls",
|
938 |
+
"_view_module_version": "1.5.0",
|
939 |
+
"_view_name": "ProgressView",
|
940 |
+
"bar_style": "success",
|
941 |
+
"description": "",
|
942 |
+
"description_tooltip": null,
|
943 |
+
"layout": "IPY_MODEL_e4fa00ecdf7e4878bd07e3e81d22f7b0",
|
944 |
+
"max": 343504568,
|
945 |
+
"min": 0,
|
946 |
+
"orientation": "horizontal",
|
947 |
+
"style": "IPY_MODEL_708979e23d1f4833b31b5c8f8c208cb4",
|
948 |
+
"value": 343504568
|
949 |
+
}
|
950 |
+
},
|
951 |
+
"53ff5a46800543d7a2e6ed532e0085eb": {
|
952 |
+
"model_module": "@jupyter-widgets/controls",
|
953 |
+
"model_name": "HTMLModel",
|
954 |
+
"model_module_version": "1.5.0",
|
955 |
+
"state": {
|
956 |
+
"_dom_classes": [],
|
957 |
+
"_model_module": "@jupyter-widgets/controls",
|
958 |
+
"_model_module_version": "1.5.0",
|
959 |
+
"_model_name": "HTMLModel",
|
960 |
+
"_view_count": null,
|
961 |
+
"_view_module": "@jupyter-widgets/controls",
|
962 |
+
"_view_module_version": "1.5.0",
|
963 |
+
"_view_name": "HTMLView",
|
964 |
+
"description": "",
|
965 |
+
"description_tooltip": null,
|
966 |
+
"layout": "IPY_MODEL_d0432428e4524f318bff7ccf2f91c6b4",
|
967 |
+
"placeholder": "",
|
968 |
+
"style": "IPY_MODEL_25a5031e71144bf4bec62694c16f39e2",
|
969 |
+
"value": " 344M/344M [00:03<00:00, 103MB/s]"
|
970 |
+
}
|
971 |
+
},
|
972 |
+
"8a3110bdb7844528a867a3f2d0daf028": {
|
973 |
+
"model_module": "@jupyter-widgets/base",
|
974 |
+
"model_name": "LayoutModel",
|
975 |
+
"model_module_version": "1.2.0",
|
976 |
+
"state": {
|
977 |
+
"_model_module": "@jupyter-widgets/base",
|
978 |
+
"_model_module_version": "1.2.0",
|
979 |
+
"_model_name": "LayoutModel",
|
980 |
+
"_view_count": null,
|
981 |
+
"_view_module": "@jupyter-widgets/base",
|
982 |
+
"_view_module_version": "1.2.0",
|
983 |
+
"_view_name": "LayoutView",
|
984 |
+
"align_content": null,
|
985 |
+
"align_items": null,
|
986 |
+
"align_self": null,
|
987 |
+
"border": null,
|
988 |
+
"bottom": null,
|
989 |
+
"display": null,
|
990 |
+
"flex": null,
|
991 |
+
"flex_flow": null,
|
992 |
+
"grid_area": null,
|
993 |
+
"grid_auto_columns": null,
|
994 |
+
"grid_auto_flow": null,
|
995 |
+
"grid_auto_rows": null,
|
996 |
+
"grid_column": null,
|
997 |
+
"grid_gap": null,
|
998 |
+
"grid_row": null,
|
999 |
+
"grid_template_areas": null,
|
1000 |
+
"grid_template_columns": null,
|
1001 |
+
"grid_template_rows": null,
|
1002 |
+
"height": null,
|
1003 |
+
"justify_content": null,
|
1004 |
+
"justify_items": null,
|
1005 |
+
"left": null,
|
1006 |
+
"margin": null,
|
1007 |
+
"max_height": null,
|
1008 |
+
"max_width": null,
|
1009 |
+
"min_height": null,
|
1010 |
+
"min_width": null,
|
1011 |
+
"object_fit": null,
|
1012 |
+
"object_position": null,
|
1013 |
+
"order": null,
|
1014 |
+
"overflow": null,
|
1015 |
+
"overflow_x": null,
|
1016 |
+
"overflow_y": null,
|
1017 |
+
"padding": null,
|
1018 |
+
"right": null,
|
1019 |
+
"top": null,
|
1020 |
+
"visibility": null,
|
1021 |
+
"width": null
|
1022 |
+
}
|
1023 |
+
},
|
1024 |
+
"dbceb3e2a8b144bd8a899e7778b9fb67": {
|
1025 |
+
"model_module": "@jupyter-widgets/base",
|
1026 |
+
"model_name": "LayoutModel",
|
1027 |
+
"model_module_version": "1.2.0",
|
1028 |
+
"state": {
|
1029 |
+
"_model_module": "@jupyter-widgets/base",
|
1030 |
+
"_model_module_version": "1.2.0",
|
1031 |
+
"_model_name": "LayoutModel",
|
1032 |
+
"_view_count": null,
|
1033 |
+
"_view_module": "@jupyter-widgets/base",
|
1034 |
+
"_view_module_version": "1.2.0",
|
1035 |
+
"_view_name": "LayoutView",
|
1036 |
+
"align_content": null,
|
1037 |
+
"align_items": null,
|
1038 |
+
"align_self": null,
|
1039 |
+
"border": null,
|
1040 |
+
"bottom": null,
|
1041 |
+
"display": null,
|
1042 |
+
"flex": null,
|
1043 |
+
"flex_flow": null,
|
1044 |
+
"grid_area": null,
|
1045 |
+
"grid_auto_columns": null,
|
1046 |
+
"grid_auto_flow": null,
|
1047 |
+
"grid_auto_rows": null,
|
1048 |
+
"grid_column": null,
|
1049 |
+
"grid_gap": null,
|
1050 |
+
"grid_row": null,
|
1051 |
+
"grid_template_areas": null,
|
1052 |
+
"grid_template_columns": null,
|
1053 |
+
"grid_template_rows": null,
|
1054 |
+
"height": null,
|
1055 |
+
"justify_content": null,
|
1056 |
+
"justify_items": null,
|
1057 |
+
"left": null,
|
1058 |
+
"margin": null,
|
1059 |
+
"max_height": null,
|
1060 |
+
"max_width": null,
|
1061 |
+
"min_height": null,
|
1062 |
+
"min_width": null,
|
1063 |
+
"object_fit": null,
|
1064 |
+
"object_position": null,
|
1065 |
+
"order": null,
|
1066 |
+
"overflow": null,
|
1067 |
+
"overflow_x": null,
|
1068 |
+
"overflow_y": null,
|
1069 |
+
"padding": null,
|
1070 |
+
"right": null,
|
1071 |
+
"top": null,
|
1072 |
+
"visibility": null,
|
1073 |
+
"width": null
|
1074 |
+
}
|
1075 |
+
},
|
1076 |
+
"dc6982a803d34c2b9366323f44cf0ef7": {
|
1077 |
+
"model_module": "@jupyter-widgets/controls",
|
1078 |
+
"model_name": "DescriptionStyleModel",
|
1079 |
+
"model_module_version": "1.5.0",
|
1080 |
+
"state": {
|
1081 |
+
"_model_module": "@jupyter-widgets/controls",
|
1082 |
+
"_model_module_version": "1.5.0",
|
1083 |
+
"_model_name": "DescriptionStyleModel",
|
1084 |
+
"_view_count": null,
|
1085 |
+
"_view_module": "@jupyter-widgets/base",
|
1086 |
+
"_view_module_version": "1.2.0",
|
1087 |
+
"_view_name": "StyleView",
|
1088 |
+
"description_width": ""
|
1089 |
+
}
|
1090 |
+
},
|
1091 |
+
"e4fa00ecdf7e4878bd07e3e81d22f7b0": {
|
1092 |
+
"model_module": "@jupyter-widgets/base",
|
1093 |
+
"model_name": "LayoutModel",
|
1094 |
+
"model_module_version": "1.2.0",
|
1095 |
+
"state": {
|
1096 |
+
"_model_module": "@jupyter-widgets/base",
|
1097 |
+
"_model_module_version": "1.2.0",
|
1098 |
+
"_model_name": "LayoutModel",
|
1099 |
+
"_view_count": null,
|
1100 |
+
"_view_module": "@jupyter-widgets/base",
|
1101 |
+
"_view_module_version": "1.2.0",
|
1102 |
+
"_view_name": "LayoutView",
|
1103 |
+
"align_content": null,
|
1104 |
+
"align_items": null,
|
1105 |
+
"align_self": null,
|
1106 |
+
"border": null,
|
1107 |
+
"bottom": null,
|
1108 |
+
"display": null,
|
1109 |
+
"flex": null,
|
1110 |
+
"flex_flow": null,
|
1111 |
+
"grid_area": null,
|
1112 |
+
"grid_auto_columns": null,
|
1113 |
+
"grid_auto_flow": null,
|
1114 |
+
"grid_auto_rows": null,
|
1115 |
+
"grid_column": null,
|
1116 |
+
"grid_gap": null,
|
1117 |
+
"grid_row": null,
|
1118 |
+
"grid_template_areas": null,
|
1119 |
+
"grid_template_columns": null,
|
1120 |
+
"grid_template_rows": null,
|
1121 |
+
"height": null,
|
1122 |
+
"justify_content": null,
|
1123 |
+
"justify_items": null,
|
1124 |
+
"left": null,
|
1125 |
+
"margin": null,
|
1126 |
+
"max_height": null,
|
1127 |
+
"max_width": null,
|
1128 |
+
"min_height": null,
|
1129 |
+
"min_width": null,
|
1130 |
+
"object_fit": null,
|
1131 |
+
"object_position": null,
|
1132 |
+
"order": null,
|
1133 |
+
"overflow": null,
|
1134 |
+
"overflow_x": null,
|
1135 |
+
"overflow_y": null,
|
1136 |
+
"padding": null,
|
1137 |
+
"right": null,
|
1138 |
+
"top": null,
|
1139 |
+
"visibility": null,
|
1140 |
+
"width": null
|
1141 |
+
}
|
1142 |
+
},
|
1143 |
+
"708979e23d1f4833b31b5c8f8c208cb4": {
|
1144 |
+
"model_module": "@jupyter-widgets/controls",
|
1145 |
+
"model_name": "ProgressStyleModel",
|
1146 |
+
"model_module_version": "1.5.0",
|
1147 |
+
"state": {
|
1148 |
+
"_model_module": "@jupyter-widgets/controls",
|
1149 |
+
"_model_module_version": "1.5.0",
|
1150 |
+
"_model_name": "ProgressStyleModel",
|
1151 |
+
"_view_count": null,
|
1152 |
+
"_view_module": "@jupyter-widgets/base",
|
1153 |
+
"_view_module_version": "1.2.0",
|
1154 |
+
"_view_name": "StyleView",
|
1155 |
+
"bar_color": null,
|
1156 |
+
"description_width": ""
|
1157 |
+
}
|
1158 |
+
},
|
1159 |
+
"d0432428e4524f318bff7ccf2f91c6b4": {
|
1160 |
+
"model_module": "@jupyter-widgets/base",
|
1161 |
+
"model_name": "LayoutModel",
|
1162 |
+
"model_module_version": "1.2.0",
|
1163 |
+
"state": {
|
1164 |
+
"_model_module": "@jupyter-widgets/base",
|
1165 |
+
"_model_module_version": "1.2.0",
|
1166 |
+
"_model_name": "LayoutModel",
|
1167 |
+
"_view_count": null,
|
1168 |
+
"_view_module": "@jupyter-widgets/base",
|
1169 |
+
"_view_module_version": "1.2.0",
|
1170 |
+
"_view_name": "LayoutView",
|
1171 |
+
"align_content": null,
|
1172 |
+
"align_items": null,
|
1173 |
+
"align_self": null,
|
1174 |
+
"border": null,
|
1175 |
+
"bottom": null,
|
1176 |
+
"display": null,
|
1177 |
+
"flex": null,
|
1178 |
+
"flex_flow": null,
|
1179 |
+
"grid_area": null,
|
1180 |
+
"grid_auto_columns": null,
|
1181 |
+
"grid_auto_flow": null,
|
1182 |
+
"grid_auto_rows": null,
|
1183 |
+
"grid_column": null,
|
1184 |
+
"grid_gap": null,
|
1185 |
+
"grid_row": null,
|
1186 |
+
"grid_template_areas": null,
|
1187 |
+
"grid_template_columns": null,
|
1188 |
+
"grid_template_rows": null,
|
1189 |
+
"height": null,
|
1190 |
+
"justify_content": null,
|
1191 |
+
"justify_items": null,
|
1192 |
+
"left": null,
|
1193 |
+
"margin": null,
|
1194 |
+
"max_height": null,
|
1195 |
+
"max_width": null,
|
1196 |
+
"min_height": null,
|
1197 |
+
"min_width": null,
|
1198 |
+
"object_fit": null,
|
1199 |
+
"object_position": null,
|
1200 |
+
"order": null,
|
1201 |
+
"overflow": null,
|
1202 |
+
"overflow_x": null,
|
1203 |
+
"overflow_y": null,
|
1204 |
+
"padding": null,
|
1205 |
+
"right": null,
|
1206 |
+
"top": null,
|
1207 |
+
"visibility": null,
|
1208 |
+
"width": null
|
1209 |
+
}
|
1210 |
+
},
|
1211 |
+
"25a5031e71144bf4bec62694c16f39e2": {
|
1212 |
+
"model_module": "@jupyter-widgets/controls",
|
1213 |
+
"model_name": "DescriptionStyleModel",
|
1214 |
+
"model_module_version": "1.5.0",
|
1215 |
+
"state": {
|
1216 |
+
"_model_module": "@jupyter-widgets/controls",
|
1217 |
+
"_model_module_version": "1.5.0",
|
1218 |
+
"_model_name": "DescriptionStyleModel",
|
1219 |
+
"_view_count": null,
|
1220 |
+
"_view_module": "@jupyter-widgets/base",
|
1221 |
+
"_view_module_version": "1.2.0",
|
1222 |
+
"_view_name": "StyleView",
|
1223 |
+
"description_width": ""
|
1224 |
+
}
|
1225 |
+
}
|
1226 |
+
}
|
1227 |
+
}
|
1228 |
+
},
|
1229 |
+
"cells": [
|
1230 |
+
{
|
1231 |
+
"cell_type": "code",
|
1232 |
+
"execution_count": 38,
|
1233 |
+
"metadata": {
|
1234 |
+
"colab": {
|
1235 |
+
"base_uri": "https://localhost:8080/"
|
1236 |
+
},
|
1237 |
+
"id": "YjdZ0vD5HQVO",
|
1238 |
+
"outputId": "ed8a7da7-9b11-4d29-8489-076c22d0e87f"
|
1239 |
+
},
|
1240 |
+
"outputs": [
|
1241 |
+
{
|
1242 |
+
"output_type": "stream",
|
1243 |
+
"name": "stdout",
|
1244 |
+
"text": [
|
1245 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
1246 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.29.2)\n",
|
1247 |
+
"Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.12.0)\n",
|
1248 |
+
"Requirement already satisfied: evaluate in /usr/local/lib/python3.10/dist-packages (0.4.0)\n",
|
1249 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.0)\n",
|
1250 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.14.1)\n",
|
1251 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)\n",
|
1252 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n",
|
1253 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0)\n",
|
1254 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)\n",
|
1255 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)\n",
|
1256 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.13.3)\n",
|
1257 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)\n",
|
1258 |
+
"Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (9.0.0)\n",
|
1259 |
+
"Requirement already satisfied: dill<0.3.7,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.6)\n",
|
1260 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
|
1261 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.2.0)\n",
|
1262 |
+
"Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.14)\n",
|
1263 |
+
"Requirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.4.0)\n",
|
1264 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.8.4)\n",
|
1265 |
+
"Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.18.0)\n",
|
1266 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n",
|
1267 |
+
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.0.12)\n",
|
1268 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n",
|
1269 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.2)\n",
|
1270 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.2)\n",
|
1271 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.3)\n",
|
1272 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
|
1273 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.5.0)\n",
|
1274 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.15)\n",
|
1275 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2022.12.7)\n",
|
1276 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
|
1277 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
|
1278 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2022.7.1)\n",
|
1279 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n"
|
1280 |
+
]
|
1281 |
+
}
|
1282 |
+
],
|
1283 |
+
"source": [
|
1284 |
+
"pip install transformers datasets evaluate"
|
1285 |
+
]
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"cell_type": "code",
|
1289 |
+
"source": [
|
1290 |
+
"from huggingface_hub import notebook_login\n",
|
1291 |
+
"\n",
|
1292 |
+
"notebook_login()"
|
1293 |
+
],
|
1294 |
+
"metadata": {
|
1295 |
+
"colab": {
|
1296 |
+
"base_uri": "https://localhost:8080/",
|
1297 |
+
"height": 415,
|
1298 |
+
"referenced_widgets": [
|
1299 |
+
"8edc67e952f34a8f945e2db51f9425ee",
|
1300 |
+
"080f20bc389f485eba6f710ad28a0360",
|
1301 |
+
"73aac851a8ae485dbcda59638e1113f6",
|
1302 |
+
"4b6cd0b9424c4577957a3e10a890fa91",
|
1303 |
+
"1fc62562be594225adf880f49e467fe4",
|
1304 |
+
"33ba82aa3ee748d29445c1da004e01b3",
|
1305 |
+
"44e15dc93ae64a6d972442e22c0cd2de",
|
1306 |
+
"a880e3a9e7954c1f9d2f0ee8d85703e4",
|
1307 |
+
"ddd514ab790a4c5fa032822cb58f6609",
|
1308 |
+
"5ff4185688f646dc806f779490d32b37",
|
1309 |
+
"bedbd9c752d54e439583a6b276e9cb42",
|
1310 |
+
"40222f6a62854865a8a24e3ed82708c9",
|
1311 |
+
"562f64d325534570a7f2aee188b73363",
|
1312 |
+
"b19d32184744436ab999a0668bd79ef6",
|
1313 |
+
"d0e7330628eb4f659478e335558d6345",
|
1314 |
+
"d7b27461e8074b51a5b92d819a953124",
|
1315 |
+
"7c25bcf4491a4333b99f58970ee52e16"
|
1316 |
+
]
|
1317 |
+
},
|
1318 |
+
"id": "84mMJtzcHk3L",
|
1319 |
+
"outputId": "3fef96d3-6f52-4dca-89ae-055247f333d1"
|
1320 |
+
},
|
1321 |
+
"execution_count": 39,
|
1322 |
+
"outputs": [
|
1323 |
+
{
|
1324 |
+
"output_type": "display_data",
|
1325 |
+
"data": {
|
1326 |
+
"text/plain": [
|
1327 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
1328 |
+
],
|
1329 |
+
"application/vnd.jupyter.widget-view+json": {
|
1330 |
+
"version_major": 2,
|
1331 |
+
"version_minor": 0,
|
1332 |
+
"model_id": "8edc67e952f34a8f945e2db51f9425ee"
|
1333 |
+
}
|
1334 |
+
},
|
1335 |
+
"metadata": {}
|
1336 |
+
}
|
1337 |
+
]
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"cell_type": "code",
|
1341 |
+
"source": [
|
1342 |
+
"from datasets import load_dataset\n",
|
1343 |
+
"\n",
|
1344 |
+
"emotions_df = load_dataset(\"FastJobs/Visual_Emotional_Analysis\", split=\"train[:800]\") "
|
1345 |
+
],
|
1346 |
+
"metadata": {
|
1347 |
+
"colab": {
|
1348 |
+
"base_uri": "https://localhost:8080/"
|
1349 |
+
},
|
1350 |
+
"id": "jePsbV2DHlCk",
|
1351 |
+
"outputId": "72fc3cd5-37c9-4f6a-f5d4-34327cd4cf03"
|
1352 |
+
},
|
1353 |
+
"execution_count": 40,
|
1354 |
+
"outputs": [
|
1355 |
+
{
|
1356 |
+
"output_type": "stream",
|
1357 |
+
"name": "stderr",
|
1358 |
+
"text": [
|
1359 |
+
"WARNING:datasets.builder:Found cached dataset imagefolder (/root/.cache/huggingface/datasets/FastJobs___imagefolder/FastJobs--Visual_Emotional_Analysis-bbb0f5e70847fc91/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f)\n"
|
1360 |
+
]
|
1361 |
+
}
|
1362 |
+
]
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"cell_type": "code",
|
1366 |
+
"source": [
|
1367 |
+
"len(emotions_df)"
|
1368 |
+
],
|
1369 |
+
"metadata": {
|
1370 |
+
"colab": {
|
1371 |
+
"base_uri": "https://localhost:8080/"
|
1372 |
+
},
|
1373 |
+
"id": "PB3_wpmzJFsh",
|
1374 |
+
"outputId": "ae86b6e2-51d6-4c93-eb0e-acd7e428db53"
|
1375 |
+
},
|
1376 |
+
"execution_count": 41,
|
1377 |
+
"outputs": [
|
1378 |
+
{
|
1379 |
+
"output_type": "execute_result",
|
1380 |
+
"data": {
|
1381 |
+
"text/plain": [
|
1382 |
+
"800"
|
1383 |
+
]
|
1384 |
+
},
|
1385 |
+
"metadata": {},
|
1386 |
+
"execution_count": 41
|
1387 |
+
}
|
1388 |
+
]
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"cell_type": "code",
|
1392 |
+
"source": [
|
1393 |
+
"emotions_df = emotions_df.train_test_split(test_size=0.2)"
|
1394 |
+
],
|
1395 |
+
"metadata": {
|
1396 |
+
"id": "5Nw4bJfTHlLT"
|
1397 |
+
},
|
1398 |
+
"execution_count": 42,
|
1399 |
+
"outputs": []
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"cell_type": "code",
|
1403 |
+
"source": [
|
1404 |
+
"# size of the train dataset\n",
|
1405 |
+
"len(emotions_df['train'])"
|
1406 |
+
],
|
1407 |
+
"metadata": {
|
1408 |
+
"colab": {
|
1409 |
+
"base_uri": "https://localhost:8080/"
|
1410 |
+
},
|
1411 |
+
"id": "ppzENe5zRkxQ",
|
1412 |
+
"outputId": "06730bbc-80e6-4cac-f525-bc78eeadf233"
|
1413 |
+
},
|
1414 |
+
"execution_count": 43,
|
1415 |
+
"outputs": [
|
1416 |
+
{
|
1417 |
+
"output_type": "execute_result",
|
1418 |
+
"data": {
|
1419 |
+
"text/plain": [
|
1420 |
+
"640"
|
1421 |
+
]
|
1422 |
+
},
|
1423 |
+
"metadata": {},
|
1424 |
+
"execution_count": 43
|
1425 |
+
}
|
1426 |
+
]
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"cell_type": "code",
|
1430 |
+
"source": [
|
1431 |
+
"# size of the test dataset\n",
|
1432 |
+
"len(emotions_df['test'])"
|
1433 |
+
],
|
1434 |
+
"metadata": {
|
1435 |
+
"colab": {
|
1436 |
+
"base_uri": "https://localhost:8080/"
|
1437 |
+
},
|
1438 |
+
"id": "wXnineZgRnLw",
|
1439 |
+
"outputId": "544690f7-d579-4ef4-aa0a-2671b8ecbcb2"
|
1440 |
+
},
|
1441 |
+
"execution_count": 44,
|
1442 |
+
"outputs": [
|
1443 |
+
{
|
1444 |
+
"output_type": "execute_result",
|
1445 |
+
"data": {
|
1446 |
+
"text/plain": [
|
1447 |
+
"160"
|
1448 |
+
]
|
1449 |
+
},
|
1450 |
+
"metadata": {},
|
1451 |
+
"execution_count": 44
|
1452 |
+
}
|
1453 |
+
]
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"cell_type": "code",
|
1457 |
+
"source": [
|
1458 |
+
"# create 2 dictionary \n",
|
1459 |
+
"# dic1: maps the label name to an integer\n",
|
1460 |
+
"# dic2: maps the label id(integer) to a label name\n",
|
1461 |
+
"labels = emotions_df[\"train\"].features[\"label\"].names\n",
|
1462 |
+
"label2id, id2label = dict(), dict()\n",
|
1463 |
+
"for i, label in enumerate(labels):\n",
|
1464 |
+
" label2id[label] = str(i)\n",
|
1465 |
+
" id2label[str(i)] = label\n"
|
1466 |
+
],
|
1467 |
+
"metadata": {
|
1468 |
+
"id": "DoqhAfVTR4Qs"
|
1469 |
+
},
|
1470 |
+
"execution_count": 45,
|
1471 |
+
"outputs": []
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"cell_type": "code",
|
1475 |
+
"source": [
|
1476 |
+
"label2id"
|
1477 |
+
],
|
1478 |
+
"metadata": {
|
1479 |
+
"colab": {
|
1480 |
+
"base_uri": "https://localhost:8080/"
|
1481 |
+
},
|
1482 |
+
"id": "aRTpaEITR5UN",
|
1483 |
+
"outputId": "06001bae-a14d-47e2-8c1b-721e4e94748e"
|
1484 |
+
},
|
1485 |
+
"execution_count": 46,
|
1486 |
+
"outputs": [
|
1487 |
+
{
|
1488 |
+
"output_type": "execute_result",
|
1489 |
+
"data": {
|
1490 |
+
"text/plain": [
|
1491 |
+
"{'anger': '0',\n",
|
1492 |
+
" 'contempt': '1',\n",
|
1493 |
+
" 'disgust': '2',\n",
|
1494 |
+
" 'fear': '3',\n",
|
1495 |
+
" 'happy': '4',\n",
|
1496 |
+
" 'neutral': '5',\n",
|
1497 |
+
" 'sad': '6',\n",
|
1498 |
+
" 'surprise': '7'}"
|
1499 |
+
]
|
1500 |
+
},
|
1501 |
+
"metadata": {},
|
1502 |
+
"execution_count": 46
|
1503 |
+
}
|
1504 |
+
]
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"cell_type": "code",
|
1508 |
+
"source": [
|
1509 |
+
"id2label"
|
1510 |
+
],
|
1511 |
+
"metadata": {
|
1512 |
+
"colab": {
|
1513 |
+
"base_uri": "https://localhost:8080/"
|
1514 |
+
},
|
1515 |
+
"id": "z1gyQ1ZZR5XV",
|
1516 |
+
"outputId": "191228fa-1b9e-4ac3-f9e3-a5028d37ff57"
|
1517 |
+
},
|
1518 |
+
"execution_count": 47,
|
1519 |
+
"outputs": [
|
1520 |
+
{
|
1521 |
+
"output_type": "execute_result",
|
1522 |
+
"data": {
|
1523 |
+
"text/plain": [
|
1524 |
+
"{'0': 'anger',\n",
|
1525 |
+
" '1': 'contempt',\n",
|
1526 |
+
" '2': 'disgust',\n",
|
1527 |
+
" '3': 'fear',\n",
|
1528 |
+
" '4': 'happy',\n",
|
1529 |
+
" '5': 'neutral',\n",
|
1530 |
+
" '6': 'sad',\n",
|
1531 |
+
" '7': 'surprise'}"
|
1532 |
+
]
|
1533 |
+
},
|
1534 |
+
"metadata": {},
|
1535 |
+
"execution_count": 47
|
1536 |
+
}
|
1537 |
+
]
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"cell_type": "code",
|
1541 |
+
"source": [
|
1542 |
+
"from transformers import AutoImageProcessor\n",
|
1543 |
+
"\n",
|
1544 |
+
"checkpoint = \"google/vit-base-patch16-224-in21k\"\n",
|
1545 |
+
"image_processor = AutoImageProcessor.from_pretrained(checkpoint)"
|
1546 |
+
],
|
1547 |
+
"metadata": {
|
1548 |
+
"id": "QmVyt4p1R5a6"
|
1549 |
+
},
|
1550 |
+
"execution_count": 48,
|
1551 |
+
"outputs": []
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"cell_type": "code",
|
1555 |
+
"source": [],
|
1556 |
+
"metadata": {
|
1557 |
+
"id": "y3wZZw6QR5eU"
|
1558 |
+
},
|
1559 |
+
"execution_count": 48,
|
1560 |
+
"outputs": []
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"cell_type": "code",
|
1564 |
+
"source": [],
|
1565 |
+
"metadata": {
|
1566 |
+
"id": "npIDtsLgTROr"
|
1567 |
+
},
|
1568 |
+
"execution_count": 48,
|
1569 |
+
"outputs": []
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"cell_type": "code",
|
1573 |
+
"source": [
|
1574 |
+
"import numpy as np\n",
|
1575 |
+
"import tensorflow as tf\n",
|
1576 |
+
"from PIL import Image\n",
|
1577 |
+
"\n",
|
1578 |
+
"# convert image to a tensor\n",
|
1579 |
+
"def convert_to_tf_tensor(image: Image):\n",
|
1580 |
+
" np_image = np.array(image)\n",
|
1581 |
+
" tf_image = tf.convert_to_tensor(np_image)\n",
|
1582 |
+
" # `expand_dims()` is used to add a batch dimension since\n",
|
1583 |
+
" # the TF augmentation layers operates on batched inputs.\n",
|
1584 |
+
" return tf.expand_dims(tf_image, 0)\n",
|
1585 |
+
"\n",
|
1586 |
+
"\n",
|
1587 |
+
"def preprocess_train(example_batch):\n",
|
1588 |
+
" \"\"\"Apply train_transforms across a batch.\"\"\"\n",
|
1589 |
+
" images = [\n",
|
1590 |
+
" train_data_augmentation(convert_to_tf_tensor(image.convert(\"RGB\"))) for image in example_batch[\"image\"]\n",
|
1591 |
+
" ]\n",
|
1592 |
+
" example_batch[\"pixel_values\"] = [tf.transpose(tf.squeeze(image)) for image in images]\n",
|
1593 |
+
" return example_batch\n",
|
1594 |
+
"\n",
|
1595 |
+
"\n",
|
1596 |
+
"def preprocess_val(example_batch):\n",
|
1597 |
+
" \"\"\"Apply val_transforms across a batch.\"\"\"\n",
|
1598 |
+
" images = [\n",
|
1599 |
+
" val_data_augmentation(convert_to_tf_tensor(image.convert(\"RGB\"))) for image in example_batch[\"image\"]\n",
|
1600 |
+
" ]\n",
|
1601 |
+
" example_batch[\"pixel_values\"] = [tf.transpose(tf.squeeze(image)) for image in images]\n",
|
1602 |
+
" return example_batch"
|
1603 |
+
],
|
1604 |
+
"metadata": {
|
1605 |
+
"id": "kWOEaQ8FRHzA"
|
1606 |
+
},
|
1607 |
+
"execution_count": 49,
|
1608 |
+
"outputs": []
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"cell_type": "code",
|
1612 |
+
"source": [],
|
1613 |
+
"metadata": {
|
1614 |
+
"id": "ma5JiYWITRRl"
|
1615 |
+
},
|
1616 |
+
"execution_count": 49,
|
1617 |
+
"outputs": []
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"cell_type": "code",
|
1621 |
+
"source": [
|
1622 |
+
"# apply transform to the training and testing dataset\n",
|
1623 |
+
"\n",
|
1624 |
+
"emotions_df[\"train\"].set_transform(preprocess_train)\n",
|
1625 |
+
"emotions_df[\"test\"].set_transform(preprocess_val)"
|
1626 |
+
],
|
1627 |
+
"metadata": {
|
1628 |
+
"id": "UpWd7hc7RH3I"
|
1629 |
+
},
|
1630 |
+
"execution_count": 50,
|
1631 |
+
"outputs": []
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"cell_type": "code",
|
1635 |
+
"source": [
|
1636 |
+
"#create a batch of examples using DefaultDataCollator\n",
|
1637 |
+
"from transformers import DefaultDataCollator\n",
|
1638 |
+
"\n",
|
1639 |
+
"data_collator = DefaultDataCollator(return_tensors=\"tf\")"
|
1640 |
+
],
|
1641 |
+
"metadata": {
|
1642 |
+
"id": "0zQOcaYBTRVA"
|
1643 |
+
},
|
1644 |
+
"execution_count": 51,
|
1645 |
+
"outputs": []
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"cell_type": "code",
|
1649 |
+
"source": [],
|
1650 |
+
"metadata": {
|
1651 |
+
"id": "zPYyzlsNTRfg"
|
1652 |
+
},
|
1653 |
+
"execution_count": 51,
|
1654 |
+
"outputs": []
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"cell_type": "code",
|
1658 |
+
"source": [
|
1659 |
+
"# evaluate accuracy\n",
|
1660 |
+
"import evaluate\n",
|
1661 |
+
"\n",
|
1662 |
+
"accuracy = evaluate.load(\"accuracy\")"
|
1663 |
+
],
|
1664 |
+
"metadata": {
|
1665 |
+
"id": "fVaQvixOVVsz"
|
1666 |
+
},
|
1667 |
+
"execution_count": 52,
|
1668 |
+
"outputs": []
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"cell_type": "code",
|
1672 |
+
"source": [
|
1673 |
+
"import numpy as np\n",
|
1674 |
+
"\n",
|
1675 |
+
"def compute_metrics(eval_pred):\n",
|
1676 |
+
" predictions, labels = eval_pred\n",
|
1677 |
+
" predictions = np.argmax(predictions, axis=1)\n",
|
1678 |
+
" return accuracy.compute(predictions=predictions, references=labels)"
|
1679 |
+
],
|
1680 |
+
"metadata": {
|
1681 |
+
"id": "nEj80b7FTseY"
|
1682 |
+
},
|
1683 |
+
"execution_count": 53,
|
1684 |
+
"outputs": []
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"cell_type": "code",
|
1688 |
+
"source": [],
|
1689 |
+
"metadata": {
|
1690 |
+
"id": "vn9G6JZ0Tsh4"
|
1691 |
+
},
|
1692 |
+
"execution_count": 53,
|
1693 |
+
"outputs": []
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"cell_type": "markdown",
|
1697 |
+
"source": [
|
1698 |
+
"TRAIN"
|
1699 |
+
],
|
1700 |
+
"metadata": {
|
1701 |
+
"id": "LvDvoIFzUEk-"
|
1702 |
+
}
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"cell_type": "code",
|
1706 |
+
"source": [
|
1707 |
+
"from transformers import create_optimizer\n",
|
1708 |
+
"\n",
|
1709 |
+
"batch_size = 16\n",
|
1710 |
+
"num_epochs = 20\n",
|
1711 |
+
"num_train_steps = len(emotions_df[\"train\"]) * num_epochs\n",
|
1712 |
+
"learning_rate = 3e-4\n",
|
1713 |
+
"weight_decay_rate = 0.01\n",
|
1714 |
+
"\n",
|
1715 |
+
"optimizer, lr_schedule = create_optimizer(\n",
|
1716 |
+
" init_lr=learning_rate,\n",
|
1717 |
+
" num_train_steps=num_train_steps,\n",
|
1718 |
+
" weight_decay_rate=weight_decay_rate,\n",
|
1719 |
+
" num_warmup_steps=0,\n",
|
1720 |
+
")"
|
1721 |
+
],
|
1722 |
+
"metadata": {
|
1723 |
+
"id": "xGYIJKUHTskw"
|
1724 |
+
},
|
1725 |
+
"execution_count": 54,
|
1726 |
+
"outputs": []
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"cell_type": "code",
|
1730 |
+
"source": [],
|
1731 |
+
"metadata": {
|
1732 |
+
"id": "M3ZPsb9LTsoL"
|
1733 |
+
},
|
1734 |
+
"execution_count": 54,
|
1735 |
+
"outputs": []
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"cell_type": "code",
|
1739 |
+
"source": [
|
1740 |
+
"from transformers import TFAutoModelForImageClassification\n",
|
1741 |
+
"\n",
|
1742 |
+
"model = TFAutoModelForImageClassification.from_pretrained(\n",
|
1743 |
+
" checkpoint,\n",
|
1744 |
+
" id2label=id2label,\n",
|
1745 |
+
" label2id=label2id,\n",
|
1746 |
+
")"
|
1747 |
+
],
|
1748 |
+
"metadata": {
|
1749 |
+
"colab": {
|
1750 |
+
"base_uri": "https://localhost:8080/"
|
1751 |
+
},
|
1752 |
+
"id": "KABXS5tkfFM8",
|
1753 |
+
"outputId": "4e5cbbc5-4334-4e5d-f96e-84bed9153db3"
|
1754 |
+
},
|
1755 |
+
"execution_count": 55,
|
1756 |
+
"outputs": [
|
1757 |
+
{
|
1758 |
+
"output_type": "stream",
|
1759 |
+
"name": "stderr",
|
1760 |
+
"text": [
|
1761 |
+
"Some layers from the model checkpoint at google/vit-base-patch16-224-in21k were not used when initializing TFViTForImageClassification: ['vit/pooler/dense/kernel:0', 'vit/pooler/dense/bias:0']\n",
|
1762 |
+
"- This IS expected if you are initializing TFViTForImageClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
1763 |
+
"- This IS NOT expected if you are initializing TFViTForImageClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
1764 |
+
"Some layers of TFViTForImageClassification were not initialized from the model checkpoint at google/vit-base-patch16-224-in21k and are newly initialized: ['classifier']\n",
|
1765 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1766 |
+
]
|
1767 |
+
}
|
1768 |
+
]
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"cell_type": "code",
|
1772 |
+
"source": [],
|
1773 |
+
"metadata": {
|
1774 |
+
"id": "lZMOoitIUexL"
|
1775 |
+
},
|
1776 |
+
"execution_count": 55,
|
1777 |
+
"outputs": []
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"cell_type": "code",
|
1781 |
+
"source": [
|
1782 |
+
"# avoiding overfitting \n",
|
1783 |
+
"\n",
|
1784 |
+
"from tensorflow import keras\n",
|
1785 |
+
"from tensorflow.keras import layers\n",
|
1786 |
+
"\n",
|
1787 |
+
"size = (image_processor.size[\"height\"], image_processor.size[\"width\"])\n",
|
1788 |
+
"\n",
|
1789 |
+
"# Transformations for the training set\n",
|
1790 |
+
"# data augmentation to make the model more robust and to avoid overfitting\n",
|
1791 |
+
"train_data_augmentation = keras.Sequential(\n",
|
1792 |
+
" [\n",
|
1793 |
+
" layers.RandomCrop(size[0], size[1]),\n",
|
1794 |
+
" layers.Rescaling(scale=1.0 / 127.5, offset=-1),\n",
|
1795 |
+
" layers.RandomFlip(\"horizontal\"),\n",
|
1796 |
+
" layers.RandomRotation(factor=0.02),\n",
|
1797 |
+
" layers.RandomZoom(height_factor=0.2, width_factor=0.2),\n",
|
1798 |
+
" ],\n",
|
1799 |
+
" name=\"train_data_augmentation\",\n",
|
1800 |
+
")\n",
|
1801 |
+
"\n",
|
1802 |
+
"# Transformations for the validation set\n",
|
1803 |
+
"val_data_augmentation = keras.Sequential(\n",
|
1804 |
+
" [\n",
|
1805 |
+
" layers.CenterCrop(size[0], size[1]),\n",
|
1806 |
+
" layers.Rescaling(scale=1.0 / 127.5, offset=-1),\n",
|
1807 |
+
" ],\n",
|
1808 |
+
" name=\"val_data_augmentation\",\n",
|
1809 |
+
")"
|
1810 |
+
],
|
1811 |
+
"metadata": {
|
1812 |
+
"id": "EtXaPaGCVE7e"
|
1813 |
+
},
|
1814 |
+
"execution_count": 56,
|
1815 |
+
"outputs": []
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"cell_type": "code",
|
1819 |
+
"source": [],
|
1820 |
+
"metadata": {
|
1821 |
+
"id": "4eKP4h7rVFNr"
|
1822 |
+
},
|
1823 |
+
"execution_count": 56,
|
1824 |
+
"outputs": []
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"cell_type": "code",
|
1828 |
+
"source": [
|
1829 |
+
"# converting our train dataset to tensor dataset (tf.data.Dataset)\n",
|
1830 |
+
"tf_train_dataset = emotions_df[\"train\"].to_tf_dataset(\n",
|
1831 |
+
" columns=\"pixel_values\", label_cols=\"label\", shuffle=True, batch_size=batch_size, collate_fn=data_collator\n",
|
1832 |
+
")\n",
|
1833 |
+
"\n",
|
1834 |
+
"# converting our test dataset to tensor dataset (tf.data.Dataset)\n",
|
1835 |
+
"tf_eval_dataset = emotions_df[\"test\"].to_tf_dataset(\n",
|
1836 |
+
" columns=\"pixel_values\", label_cols=\"label\", shuffle=True, batch_size=batch_size, collate_fn=data_collator\n",
|
1837 |
+
")"
|
1838 |
+
],
|
1839 |
+
"metadata": {
|
1840 |
+
"id": "3j70Yv9dRH6t"
|
1841 |
+
},
|
1842 |
+
"execution_count": 57,
|
1843 |
+
"outputs": []
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"cell_type": "code",
|
1847 |
+
"source": [
|
1848 |
+
"from tensorflow.keras.losses import SparseCategoricalCrossentropy\n",
|
1849 |
+
"\n",
|
1850 |
+
"loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n",
|
1851 |
+
"model.compile(optimizer=optimizer, loss=loss)"
|
1852 |
+
],
|
1853 |
+
"metadata": {
|
1854 |
+
"id": "iiDCBtU5UjqM"
|
1855 |
+
},
|
1856 |
+
"execution_count": 58,
|
1857 |
+
"outputs": []
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"cell_type": "code",
|
1861 |
+
"source": [
|
1862 |
+
"from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback\n",
|
1863 |
+
"\n",
|
1864 |
+
"metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset)\n",
|
1865 |
+
"push_to_hub_callback = PushToHubCallback(\n",
|
1866 |
+
" output_dir=\"emotions_classifier\",\n",
|
1867 |
+
" tokenizer=image_processor,\n",
|
1868 |
+
" save_strategy=\"no\",\n",
|
1869 |
+
")\n",
|
1870 |
+
"callbacks = [metric_callback, push_to_hub_callback]"
|
1871 |
+
],
|
1872 |
+
"metadata": {
|
1873 |
+
"colab": {
|
1874 |
+
"base_uri": "https://localhost:8080/"
|
1875 |
+
},
|
1876 |
+
"id": "kt3kPnOkUjuG",
|
1877 |
+
"outputId": "ceb5b9e9-768b-46ea-8df1-45022649b6f4"
|
1878 |
+
},
|
1879 |
+
"execution_count": 59,
|
1880 |
+
"outputs": [
|
1881 |
+
{
|
1882 |
+
"output_type": "stream",
|
1883 |
+
"name": "stderr",
|
1884 |
+
"text": [
|
1885 |
+
"/content/emotions_classifier is already a clone of https://huggingface.co/CynthiaCR/emotions_classifier. Make sure you pull the latest changes with `repo.git_pull()`.\n",
|
1886 |
+
"WARNING:huggingface_hub.repository:/content/emotions_classifier is already a clone of https://huggingface.co/CynthiaCR/emotions_classifier. Make sure you pull the latest changes with `repo.git_pull()`.\n"
|
1887 |
+
]
|
1888 |
+
}
|
1889 |
+
]
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"cell_type": "code",
|
1893 |
+
"source": [
|
1894 |
+
"model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks)"
|
1895 |
+
],
|
1896 |
+
"metadata": {
|
1897 |
+
"colab": {
|
1898 |
+
"base_uri": "https://localhost:8080/",
|
1899 |
+
"height": 920,
|
1900 |
+
"referenced_widgets": [
|
1901 |
+
"a965aa730e164b249ff040457c944d94",
|
1902 |
+
"cdefc2d658bc4bd3ba8b3b4d0affd263",
|
1903 |
+
"f41f320a42c54f90996b54af83689aff",
|
1904 |
+
"833a251db60140a598b9b4d28583271b",
|
1905 |
+
"b157a9c50b834c24acc1445c803c670c",
|
1906 |
+
"64deb634ee7249ad8ed9bd93c1979459",
|
1907 |
+
"b41049a008604c1ab7bdb4646092628d",
|
1908 |
+
"6d971fa517aa4c1295522279f29f0258",
|
1909 |
+
"4f316fbfcf3644cd84a3f146265c9ba2",
|
1910 |
+
"06067b563aa54cc386e4954a9702042f",
|
1911 |
+
"e2dca77a089e43caa918174707165b56"
|
1912 |
+
]
|
1913 |
+
},
|
1914 |
+
"id": "k1m8BvqxVt-t",
|
1915 |
+
"outputId": "2594dd93-d133-4ae0-c4c9-50460962540e"
|
1916 |
+
},
|
1917 |
+
"execution_count": 60,
|
1918 |
+
"outputs": [
|
1919 |
+
{
|
1920 |
+
"output_type": "stream",
|
1921 |
+
"name": "stdout",
|
1922 |
+
"text": [
|
1923 |
+
"Epoch 1/20\n",
|
1924 |
+
"40/40 [==============================] - 69s 1s/step - loss: 2.0363 - val_loss: 2.0960 - accuracy: 0.1000\n",
|
1925 |
+
"Epoch 2/20\n",
|
1926 |
+
"40/40 [==============================] - 47s 1s/step - loss: 2.0822 - val_loss: 2.1254 - accuracy: 0.0813\n",
|
1927 |
+
"Epoch 3/20\n",
|
1928 |
+
"40/40 [==============================] - 47s 1s/step - loss: 1.9916 - val_loss: 1.9392 - accuracy: 0.2062\n",
|
1929 |
+
"Epoch 4/20\n",
|
1930 |
+
"40/40 [==============================] - 47s 1s/step - loss: 1.9223 - val_loss: 1.8385 - accuracy: 0.1688\n",
|
1931 |
+
"Epoch 5/20\n",
|
1932 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.8213 - val_loss: 1.7294 - accuracy: 0.2313\n",
|
1933 |
+
"Epoch 6/20\n",
|
1934 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.6940 - val_loss: 1.6953 - accuracy: 0.2625\n",
|
1935 |
+
"Epoch 7/20\n",
|
1936 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.7153 - val_loss: 1.6009 - accuracy: 0.3187\n",
|
1937 |
+
"Epoch 8/20\n",
|
1938 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.5788 - val_loss: 1.6385 - accuracy: 0.2750\n",
|
1939 |
+
"Epoch 9/20\n",
|
1940 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.5359 - val_loss: 1.5635 - accuracy: 0.3438\n",
|
1941 |
+
"Epoch 10/20\n",
|
1942 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.4768 - val_loss: 1.6180 - accuracy: 0.3250\n",
|
1943 |
+
"Epoch 11/20\n",
|
1944 |
+
"40/40 [==============================] - 50s 1s/step - loss: 1.4746 - val_loss: 1.6063 - accuracy: 0.3125\n",
|
1945 |
+
"Epoch 12/20\n",
|
1946 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.5163 - val_loss: 1.5641 - accuracy: 0.3625\n",
|
1947 |
+
"Epoch 13/20\n",
|
1948 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.4692 - val_loss: 1.5722 - accuracy: 0.3063\n",
|
1949 |
+
"Epoch 14/20\n",
|
1950 |
+
"40/40 [==============================] - 50s 1s/step - loss: 1.4468 - val_loss: 1.7363 - accuracy: 0.3500\n",
|
1951 |
+
"Epoch 15/20\n",
|
1952 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.7116 - val_loss: 1.7531 - accuracy: 0.2687\n",
|
1953 |
+
"Epoch 16/20\n",
|
1954 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.5334 - val_loss: 1.5908 - accuracy: 0.2562\n",
|
1955 |
+
"Epoch 17/20\n",
|
1956 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.4988 - val_loss: 1.5169 - accuracy: 0.3312\n",
|
1957 |
+
"Epoch 18/20\n",
|
1958 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.4605 - val_loss: 1.5041 - accuracy: 0.2812\n",
|
1959 |
+
"Epoch 19/20\n",
|
1960 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.3545 - val_loss: 1.4824 - accuracy: 0.3187\n",
|
1961 |
+
"Epoch 20/20\n",
|
1962 |
+
"40/40 [==============================] - 48s 1s/step - loss: 1.3846 - val_loss: 1.6122 - accuracy: 0.2687\n"
|
1963 |
+
]
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"output_type": "display_data",
|
1967 |
+
"data": {
|
1968 |
+
"text/plain": [
|
1969 |
+
"Upload file tf_model.h5: 0%| | 1.00/328M [00:00<?, ?B/s]"
|
1970 |
+
],
|
1971 |
+
"application/vnd.jupyter.widget-view+json": {
|
1972 |
+
"version_major": 2,
|
1973 |
+
"version_minor": 0,
|
1974 |
+
"model_id": "a965aa730e164b249ff040457c944d94"
|
1975 |
+
}
|
1976 |
+
},
|
1977 |
+
"metadata": {}
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"output_type": "stream",
|
1981 |
+
"name": "stderr",
|
1982 |
+
"text": [
|
1983 |
+
"To https://huggingface.co/CynthiaCR/emotions_classifier\n",
|
1984 |
+
" 6794f2e..9552b39 main -> main\n",
|
1985 |
+
"\n",
|
1986 |
+
"WARNING:huggingface_hub.repository:To https://huggingface.co/CynthiaCR/emotions_classifier\n",
|
1987 |
+
" 6794f2e..9552b39 main -> main\n",
|
1988 |
+
"\n"
|
1989 |
+
]
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"output_type": "execute_result",
|
1993 |
+
"data": {
|
1994 |
+
"text/plain": [
|
1995 |
+
"<keras.callbacks.History at 0x7f131a6aae60>"
|
1996 |
+
]
|
1997 |
+
},
|
1998 |
+
"metadata": {},
|
1999 |
+
"execution_count": 60
|
2000 |
+
}
|
2001 |
+
]
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"cell_type": "markdown",
|
2005 |
+
"source": [
|
2006 |
+
"Prediction"
|
2007 |
+
],
|
2008 |
+
"metadata": {
|
2009 |
+
"id": "29ZPkramjcir"
|
2010 |
+
}
|
2011 |
+
},
|
2012 |
+
{
|
2013 |
+
"cell_type": "code",
|
2014 |
+
"source": [],
|
2015 |
+
"metadata": {
|
2016 |
+
"id": "C_9-dH4cVuEB"
|
2017 |
+
},
|
2018 |
+
"execution_count": 60,
|
2019 |
+
"outputs": []
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"cell_type": "code",
|
2023 |
+
"source": [
|
2024 |
+
"ds = load_dataset(\"FastJobs/Visual_Emotional_Analysis\", split=\"train[:10]\")\n",
|
2025 |
+
"ds"
|
2026 |
+
],
|
2027 |
+
"metadata": {
|
2028 |
+
"id": "JUFTj8TYiBwS",
|
2029 |
+
"colab": {
|
2030 |
+
"base_uri": "https://localhost:8080/"
|
2031 |
+
},
|
2032 |
+
"outputId": "c22db2f0-0443-4aa9-9346-739967bb43b8"
|
2033 |
+
},
|
2034 |
+
"execution_count": 61,
|
2035 |
+
"outputs": [
|
2036 |
+
{
|
2037 |
+
"output_type": "stream",
|
2038 |
+
"name": "stderr",
|
2039 |
+
"text": [
|
2040 |
+
"WARNING:datasets.builder:Found cached dataset imagefolder (/root/.cache/huggingface/datasets/FastJobs___imagefolder/FastJobs--Visual_Emotional_Analysis-bbb0f5e70847fc91/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f)\n"
|
2041 |
+
]
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"output_type": "execute_result",
|
2045 |
+
"data": {
|
2046 |
+
"text/plain": [
|
2047 |
+
"Dataset({\n",
|
2048 |
+
" features: ['image', 'label'],\n",
|
2049 |
+
" num_rows: 10\n",
|
2050 |
+
"})"
|
2051 |
+
]
|
2052 |
+
},
|
2053 |
+
"metadata": {},
|
2054 |
+
"execution_count": 61
|
2055 |
+
}
|
2056 |
+
]
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"cell_type": "code",
|
2060 |
+
"source": [
|
2061 |
+
"image = ds[\"image\"][0]"
|
2062 |
+
],
|
2063 |
+
"metadata": {
|
2064 |
+
"id": "WBXiMJ48qBKl"
|
2065 |
+
},
|
2066 |
+
"execution_count": 62,
|
2067 |
+
"outputs": []
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"cell_type": "code",
|
2071 |
+
"source": [
|
2072 |
+
"from transformers import pipeline\n",
|
2073 |
+
"\n",
|
2074 |
+
"classifier = pipeline(\"image-classification\", model=\"CynthiaCR/emotions_classifier\")\n",
|
2075 |
+
"classifier(image)"
|
2076 |
+
],
|
2077 |
+
"metadata": {
|
2078 |
+
"colab": {
|
2079 |
+
"base_uri": "https://localhost:8080/",
|
2080 |
+
"height": 232,
|
2081 |
+
"referenced_widgets": [
|
2082 |
+
"75599d75d500474db4e9ca8801af0ac6",
|
2083 |
+
"5d8c864d082047b2a3b180985ae0b698",
|
2084 |
+
"502dd70810054869bb01aae69ab2431d",
|
2085 |
+
"53ff5a46800543d7a2e6ed532e0085eb",
|
2086 |
+
"8a3110bdb7844528a867a3f2d0daf028",
|
2087 |
+
"dbceb3e2a8b144bd8a899e7778b9fb67",
|
2088 |
+
"dc6982a803d34c2b9366323f44cf0ef7",
|
2089 |
+
"e4fa00ecdf7e4878bd07e3e81d22f7b0",
|
2090 |
+
"708979e23d1f4833b31b5c8f8c208cb4",
|
2091 |
+
"d0432428e4524f318bff7ccf2f91c6b4",
|
2092 |
+
"25a5031e71144bf4bec62694c16f39e2"
|
2093 |
+
]
|
2094 |
+
},
|
2095 |
+
"id": "QkaFEJg2Ujxl",
|
2096 |
+
"outputId": "5ed6475b-9d54-48b8-b175-a16e39341a1d"
|
2097 |
+
},
|
2098 |
+
"execution_count": 63,
|
2099 |
+
"outputs": [
|
2100 |
+
{
|
2101 |
+
"output_type": "display_data",
|
2102 |
+
"data": {
|
2103 |
+
"text/plain": [
|
2104 |
+
"Downloading tf_model.h5: 0%| | 0.00/344M [00:00<?, ?B/s]"
|
2105 |
+
],
|
2106 |
+
"application/vnd.jupyter.widget-view+json": {
|
2107 |
+
"version_major": 2,
|
2108 |
+
"version_minor": 0,
|
2109 |
+
"model_id": "75599d75d500474db4e9ca8801af0ac6"
|
2110 |
+
}
|
2111 |
+
},
|
2112 |
+
"metadata": {}
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"output_type": "stream",
|
2116 |
+
"name": "stderr",
|
2117 |
+
"text": [
|
2118 |
+
"All model checkpoint layers were used when initializing TFViTForImageClassification.\n",
|
2119 |
+
"\n",
|
2120 |
+
"All the layers of TFViTForImageClassification were initialized from the model checkpoint at CynthiaCR/emotions_classifier.\n",
|
2121 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFViTForImageClassification for predictions without further training.\n"
|
2122 |
+
]
|
2123 |
+
},
|
2124 |
+
{
|
2125 |
+
"output_type": "execute_result",
|
2126 |
+
"data": {
|
2127 |
+
"text/plain": [
|
2128 |
+
"[{'score': 0.32123512029647827, 'label': 'fear'},\n",
|
2129 |
+
" {'score': 0.31210750341415405, 'label': 'sad'},\n",
|
2130 |
+
" {'score': 0.1644315868616104, 'label': 'anger'},\n",
|
2131 |
+
" {'score': 0.10217338800430298, 'label': 'disgust'},\n",
|
2132 |
+
" {'score': 0.04358164221048355, 'label': 'contempt'}]"
|
2133 |
+
]
|
2134 |
+
},
|
2135 |
+
"metadata": {},
|
2136 |
+
"execution_count": 63
|
2137 |
+
}
|
2138 |
+
]
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"cell_type": "code",
|
2142 |
+
"source": [
|
2143 |
+
"from transformers import AutoImageProcessor\n",
|
2144 |
+
"\n",
|
2145 |
+
"image_processor = AutoImageProcessor.from_pretrained(\"CynthiaCR/emotions_classifier\")\n",
|
2146 |
+
"inputs = image_processor(image, return_tensors=\"tf\")"
|
2147 |
+
],
|
2148 |
+
"metadata": {
|
2149 |
+
"id": "0vbEKCwX0ybE"
|
2150 |
+
},
|
2151 |
+
"execution_count": 64,
|
2152 |
+
"outputs": []
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"cell_type": "code",
|
2156 |
+
"source": [],
|
2157 |
+
"metadata": {
|
2158 |
+
"id": "sqhjJ_9jkdgl"
|
2159 |
+
},
|
2160 |
+
"execution_count": 64,
|
2161 |
+
"outputs": []
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"cell_type": "code",
|
2165 |
+
"source": [
|
2166 |
+
"from transformers import TFAutoModelForImageClassification\n",
|
2167 |
+
"\n",
|
2168 |
+
"model = TFAutoModelForImageClassification.from_pretrained(\"CynthiaCR/emotions_classifier\")\n",
|
2169 |
+
"logits = model(**inputs).logits"
|
2170 |
+
],
|
2171 |
+
"metadata": {
|
2172 |
+
"id": "iCMCASWf0yew",
|
2173 |
+
"colab": {
|
2174 |
+
"base_uri": "https://localhost:8080/"
|
2175 |
+
},
|
2176 |
+
"outputId": "6f38799c-8478-4b6f-fba3-0beaa95ed8f5"
|
2177 |
+
},
|
2178 |
+
"execution_count": 65,
|
2179 |
+
"outputs": [
|
2180 |
+
{
|
2181 |
+
"output_type": "stream",
|
2182 |
+
"name": "stderr",
|
2183 |
+
"text": [
|
2184 |
+
"All model checkpoint layers were used when initializing TFViTForImageClassification.\n",
|
2185 |
+
"\n",
|
2186 |
+
"All the layers of TFViTForImageClassification were initialized from the model checkpoint at CynthiaCR/emotions_classifier.\n",
|
2187 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFViTForImageClassification for predictions without further training.\n"
|
2188 |
+
]
|
2189 |
+
}
|
2190 |
+
]
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"cell_type": "code",
|
2194 |
+
"source": [],
|
2195 |
+
"metadata": {
|
2196 |
+
"id": "7iSRY48Gkdti"
|
2197 |
+
},
|
2198 |
+
"execution_count": 65,
|
2199 |
+
"outputs": []
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"cell_type": "code",
|
2203 |
+
"source": [
|
2204 |
+
"predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])\n",
|
2205 |
+
"model.config.id2label[predicted_class_id]"
|
2206 |
+
],
|
2207 |
+
"metadata": {
|
2208 |
+
"id": "pJUFDX_e0yh9",
|
2209 |
+
"colab": {
|
2210 |
+
"base_uri": "https://localhost:8080/",
|
2211 |
+
"height": 36
|
2212 |
+
},
|
2213 |
+
"outputId": "c09c9df5-41d8-418e-a44c-0cab27fe28e1"
|
2214 |
+
},
|
2215 |
+
"execution_count": 66,
|
2216 |
+
"outputs": [
|
2217 |
+
{
|
2218 |
+
"output_type": "execute_result",
|
2219 |
+
"data": {
|
2220 |
+
"text/plain": [
|
2221 |
+
"'fear'"
|
2222 |
+
],
|
2223 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
2224 |
+
"type": "string"
|
2225 |
+
}
|
2226 |
+
},
|
2227 |
+
"metadata": {},
|
2228 |
+
"execution_count": 66
|
2229 |
+
}
|
2230 |
+
]
|
2231 |
+
}
|
2232 |
+
]
|
2233 |
+
}
|