Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1621.79 +/- 179.73
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4755cd04e9c638cb31a73c2f7facc5b4433e35ca34a73fc127175008ca6305
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f2987c670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f2987c700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f2987c790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f2987c820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4f2987c8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4f2987c940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4f2987c9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f2987ca60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4f2987caf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f2987cb80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f2987cc10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f2987cca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4f2987d940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679225075848552151,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACUulT70Vg4/CRmPPjFPEUDy36S8phHoP87MTT8k3I6/MwczP3AvK76f/pe/3b0NwCALEj+p4hs/EIauPk7x7z9k5KA//Ykfv1kGGz9j0FS/7e9rvfay8b8gDSk/Rs5pP30cgL9reBA/5M3gPrPVkr/8GCY/OG3OPRY/DT+ybpE/CyhOv1L6CL8n1Wa9HHg5vyn/HD4lEfO+hRgIPtItFEDPu1U9/0+gv2UwGz61Tx6/FQKDv++O2L+h89c+gS+YvwY6zj6qmIe+gNOrP4cq7L59HIC/a3gQP+TN4D6z1ZK/t62GPnXxHz/vMmI+b5MKQFfm0D8j042/ekkLP+OGCb8hZjM/2g26P+dUfz5f1ihANMrGP9D8xb5lMx0/vPMLwAnikz8aPS+/9vGKPna9ZD9rIi+/0WecP2bXxD3GukW/fRyAv4zQ4r/kzeA+lClfP6yAz70PULk8ZKQUP2yDwj96a9U98yx8PkLE8T73iEW/3AEvP2jLTrwduM2+nspLvnRdNT/0zcw/MiYVP0y6pT/hdlk/4e/BP02zLz+P/cu7DUDwP5whTz/DOY4/T1dTP30cgL9reBA/5M3gPpQpXz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACPtyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvnzIPQAAAABwmtm/AAAAAEa1x7wAAAAA08LwPwAAAACJEvc9AAAAAAxa5z8AAAAAd2/KPQAAAAB1Gu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+eZiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJmmrb0AAAAAro/wvwAAAADhn1q9AAAAAIfZ5z8AAAAA4Qf2PQAAAACSSd4/AAAAAIrOOTsAAAAAuFXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXGNbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICTDBq8AAAAABSM978AAAAASpX2vQAAAAAwC+E/AAAAAIp9er0AAAAALt7jPwAAAAD6nVW9AAAAALZE578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAima41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/PGuvQAAAADwI9u/AAAAAAzYzz0AAAAA/AnzPwAAAADrDhU7AAAAAO8N8D8AAAAAuZQJPgAAAAD34ve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJO8vv8ZUDOMAWyUTegDjAF0lEdAqyPuL5ylvnV9lChoBkdAkIfRj4Hoo2gHTegDaAhHQKslUqZtvXN1fZQoaAZHQI/PgPbwjMVoB03oA2gIR0CrLy0+1SfldX2UKGgGR0CKr0BiCrcTaAdN6ANoCEdAqzCvexfOU3V9lChoBkdAksnDwYtQK2gHTegDaAhHQKsyyQrc0tR1fZQoaAZHQJVf6/BWPtFoB03oA2gIR0CrM7PSlWOqdX2UKGgGR0CXc1Qg9vCNaAdN6ANoCEdAqzvHFtKqXHV9lChoBkdAlPQLX18LKGgHTegDaAhHQKs9RuhK15V1fZQoaAZHQJBecS00FbFoB03oA2gIR0CrP91TBInSdX2UKGgGR0CRUSKvFFUiaAdN6ANoCEdAq0EdWn0kGHV9lChoBkdAkMru6Ae7tmgHTegDaAhHQKtL4KJl8PZ1fZQoaAZHQJOWkXuVopRoB03oA2gIR0CrTU6/RE4OdX2UKGgGR0CL5WfuCwr2aAdN6ANoCEdAq09RKFqSHXV9lChoBkdAklgn09QoC2gHTegDaAhHQKtQSxgRbr11fZQoaAZHQItkjfP5YYBoB03oA2gIR0CrWI5eJHiFdX2UKGgGR0CVgP5le4TcaAdN6ANoCEdAq1oOPV/c33V9lChoBkdAljjD3qRlpWgHTegDaAhHQKtcJfR/mT11fZQoaAZHQJcOjpljEvVoB03oA2gIR0CrXRDa4+bFdX2UKGgGR0CQwb+qioKlaAdN6ANoCEdAq2i4TK1XvHV9lChoBkdAiSOEZBLPEGgHTegDaAhHQKtqL1BdD6Z1fZQoaAZHQIx6Qgs9SuRoB03oA2gIR0CrbD1Li++NdX2UKGgGR0B1S7+fh/AkaAdN6ANoCEdAq20p5AyEc3V9lChoBkdAaWmVuaWonGgHTegDaAhHQKt1PyjpLVZ1fZQoaAZHQJR3sWoFV1hoB03oA2gIR0CrdrzK1XvIdX2UKGgGR0CVnh4H5aePaAdN6ANoCEdAq3jSgRK6F3V9lChoBkdAlPw1zhgmZ2gHTegDaAhHQKt5wCEHt4R1fZQoaAZHQIjvnIlt0mtoB03oA2gIR0CrhO/Ls8gZdX2UKGgGR0B2n0y2x6fKaAdN6ANoCEdAq4blDSgGr3V9lChoBkdAiCXX9JjDsWgHTegDaAhHQKuI5kdV/+d1fZQoaAZHQJarn1oQFs5oB03oA2gIR0Cridz37DVIdX2UKGgGR0CUD39GZuyeaAdN6ANoCEdAq5Iq4c3l0nV9lChoBkdAk/3UytV7yGgHTegDaAhHQKuTri4J/od1fZQoaAZHQIUTQFotcwBoB03oA2gIR0CrlcWNFSbZdX2UKGgGR0CV0MmoR7JGaAdN6ANoCEdAq5athXr+pHV9lChoBkdAdSXWJrLyMGgHTegDaAhHQKug9II4VAR1fZQoaAZHQI2IHustCiRoB03oA2gIR0Cro0cXm/34dX2UKGgGR0B4d9g0CRwIaAdN6ANoCEdAq6X446wMY3V9lChoBkdAiRQCYkVvdmgHTegDaAhHQKum4wX668R1fZQoaAZHQJKPCHqNZNhoB03oA2gIR0CrrxAHmig1dX2UKGgGR0BzHs/D+BH1aAdN6ANoCEdAq7CWe18b73V9lChoBkdAk1lWJBPbf2gHTegDaAhHQKuyo1ejVQR1fZQoaAZHQHx3fhhpg1FoB03oA2gIR0Crs4fHYHxCdX2UKGgGR0CN4eFA3T/iaAdN6ANoCEdAq7zJwS8J2XV9lChoBkdAjxxi79Q40mgHTegDaAhHQKu/Dd1uBMB1fZQoaAZHQHhM7+DOC5FoB03oA2gIR0Crwj/FaSs9dX2UKGgGR0CQwX5vtMPCaAdN6ANoCEdAq8OmTxG2C3V9lChoBkdAjwgEX+ERJ2gHTegDaAhHQKvLvsImgJ11fZQoaAZHQJLWCAbyYoloB03oA2gIR0CrzS+UY8+zdX2UKGgGR0CUky8O09haaAdN6ANoCEdAq89BrgwXZXV9lChoBkdAl3zPUnXummgHTegDaAhHQKvQMMLncL11fZQoaAZHQJgoR9w3o9toB03oA2gIR0Cr2HpN9H+ZdX2UKGgGR0CXBAfzSThYaAdN6ANoCEdAq9qGQCCBgHV9lChoBkdAlIE/YBeXzGgHTegDaAhHQKvdh3LV4HJ1fZQoaAZHQJqL2KR+z+poB03oA2gIR0Cr3unLidaudX2UKGgGR0CYvbogFHJ+aAdN6ANoCEdAq+g/kYGdJHV9lChoBkdAl2WasySFG2gHTegDaAhHQKvps+wC8vp1fZQoaAZHQJe3DT3IuGtoB03oA2gIR0Cr674wZflZdX2UKGgGR0CY1gXWOIZZaAdN6ANoCEdAq+yjQ3PzF3V9lChoBkdAmVnoDTz/ZWgHTegDaAhHQKv019H+ZPV1fZQoaAZHQJmQjmOlwcZoB03oA2gIR0Cr9lRUFSsKdX2UKGgGR0CbMZksjFAFaAdN6ANoCEdAq/kal7+kxnV9lChoBkdAmfoGTcIqsmgHTegDaAhHQKv6aieumrN1fZQoaAZHQJfzU8ZDRdBoB03oA2gIR0CsBRnwXqJNdX2UKGgGR0CaoHnjyWiUaAdN6ANoCEdArAaUhRqGlHV9lChoBkdAmO93l0YCQ2gHTegDaAhHQKwIpMYdhiN1fZQoaAZHQJnykmgJ1JVoB03oA2gIR0CsCYRqwhW6dX2UKGgGR0CcrDdcB2fTaAdN6ANoCEdArBHCdrftQnV9lChoBkdAl7llVghKUWgHTegDaAhHQKwTJTMqz7d1fZQoaAZHQJldTqIJqqRoB03oA2gIR0CsFSF6Rhc8dX2UKGgGR0Cdr656+nIiaAdN6ANoCEdArBZLLr5ZbXV9lChoBkdAnJhCed07sGgHTegDaAhHQKwhkzxgAp91fZQoaAZHQJe01r6+FlFoB03oA2gIR0CsIwm03Ov/dX2UKGgGR0Ce7/ek56t1aAdN6ANoCEdArCUMMiKR+3V9lChoBkdAn2Z0Ttb9qGgHTegDaAhHQKwl9y3CsOp1fZQoaAZHQJspAy0rsjVoB03oA2gIR0CsLhGL9/BndX2UKGgGR0CYGV6ciGFjaAdN6ANoCEdArC+CpeeFtnV9lChoBkdAlqNjguRLb2gHTegDaAhHQKwxgxFAmiR1fZQoaAZHQJvCXZWaMJhoB03oA2gIR0CsMm+KTB69dX2UKGgGR0CY3BVW0Z3taAdN6ANoCEdArD2YieNDMXV9lChoBkdAl6BswUQCjmgHTegDaAhHQKw/kTTvy9V1fZQoaAZHQJhkQdCE6DJoB03oA2gIR0CsQaLb5/LDdX2UKGgGR0Cb49LdvbXZaAdN6ANoCEdArEKP+0gKW3V9lChoBkdAmsyGY0EX+GgHTegDaAhHQKxKvyy2QXB1fZQoaAZHQJefOksSTQpoB03oA2gIR0CsTDxpDeCTdX2UKGgGR0CdUeUIcBEKaAdN6ANoCEdArE5KXD3ueHV9lChoBkdAncaYjGDL82gHTegDaAhHQKxPL06HTJB1fZQoaAZHQJmEK2x6fJ5oB03oA2gIR0CsWWO58Sf2dX2UKGgGR0CdJ36NVBD5aAdN6ANoCEdArFvEfYBeX3V9lChoBkdAnTGUlE7W/mgHTegDaAhHQKxep6IFeOZ1fZQoaAZHQJjdK7K7qY9oB03oA2gIR0CsX5CaAnUldX2UKGgGR0CY3tVhTfixaAdN6ANoCEdArGfSxZ+x4nV9lChoBkdAmzv1NYbKimgHTegDaAhHQKxpVQXQ+ll1fZQoaAZHQJSPaDQJHAhoB03oA2gIR0Csa2SBClabdX2UKGgGR0CaCKJrLyMDaAdN6ANoCEdArGxVrEcbSHV9lChoBkdAmwK/mYBvJmgHTegDaAhHQKx14d8Rcu91fZQoaAZHQJzhqkvboKVoB03oA2gIR0CseCY46wMZdX2UKGgGR0CaUM9deIEbaAdN6ANoCEdArHttzr/sFHV9lChoBkdAmOgpHEuQIWgHTegDaAhHQKx82lqJuVJ1fZQoaAZHQJZKG3y7PIJoB03oA2gIR0CshTJFCswMdX2UKGgGR0CaRTOjqOcUaAdN6ANoCEdArIa2QGOdXnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faad9f68cd733679e80cafb6cb8a5a8f690f73e5b61115594ee1fd80b8a04ca7
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca1289fffca92a0af72b4d60623a7b25571a5e410479069e137cdf944390121b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f2987c670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f2987c700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f2987c790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f2987c820>", "_build": "<function ActorCriticPolicy._build at 0x7f4f2987c8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f2987c940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4f2987c9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f2987ca60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f2987caf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f2987cb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f2987cc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f2987cca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4f2987d940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679225075848552151, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACUulT70Vg4/CRmPPjFPEUDy36S8phHoP87MTT8k3I6/MwczP3AvK76f/pe/3b0NwCALEj+p4hs/EIauPk7x7z9k5KA//Ykfv1kGGz9j0FS/7e9rvfay8b8gDSk/Rs5pP30cgL9reBA/5M3gPrPVkr/8GCY/OG3OPRY/DT+ybpE/CyhOv1L6CL8n1Wa9HHg5vyn/HD4lEfO+hRgIPtItFEDPu1U9/0+gv2UwGz61Tx6/FQKDv++O2L+h89c+gS+YvwY6zj6qmIe+gNOrP4cq7L59HIC/a3gQP+TN4D6z1ZK/t62GPnXxHz/vMmI+b5MKQFfm0D8j042/ekkLP+OGCb8hZjM/2g26P+dUfz5f1ihANMrGP9D8xb5lMx0/vPMLwAnikz8aPS+/9vGKPna9ZD9rIi+/0WecP2bXxD3GukW/fRyAv4zQ4r/kzeA+lClfP6yAz70PULk8ZKQUP2yDwj96a9U98yx8PkLE8T73iEW/3AEvP2jLTrwduM2+nspLvnRdNT/0zcw/MiYVP0y6pT/hdlk/4e/BP02zLz+P/cu7DUDwP5whTz/DOY4/T1dTP30cgL9reBA/5M3gPpQpXz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACPtyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvnzIPQAAAABwmtm/AAAAAEa1x7wAAAAA08LwPwAAAACJEvc9AAAAAAxa5z8AAAAAd2/KPQAAAAB1Gu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+eZiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJmmrb0AAAAAro/wvwAAAADhn1q9AAAAAIfZ5z8AAAAA4Qf2PQAAAACSSd4/AAAAAIrOOTsAAAAAuFXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXGNbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICTDBq8AAAAABSM978AAAAASpX2vQAAAAAwC+E/AAAAAIp9er0AAAAALt7jPwAAAAD6nVW9AAAAALZE578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAima41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/PGuvQAAAADwI9u/AAAAAAzYzz0AAAAA/AnzPwAAAADrDhU7AAAAAO8N8D8AAAAAuZQJPgAAAAD34ve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJO8vv8ZUDOMAWyUTegDjAF0lEdAqyPuL5ylvnV9lChoBkdAkIfRj4Hoo2gHTegDaAhHQKslUqZtvXN1fZQoaAZHQI/PgPbwjMVoB03oA2gIR0CrLy0+1SfldX2UKGgGR0CKr0BiCrcTaAdN6ANoCEdAqzCvexfOU3V9lChoBkdAksnDwYtQK2gHTegDaAhHQKsyyQrc0tR1fZQoaAZHQJVf6/BWPtFoB03oA2gIR0CrM7PSlWOqdX2UKGgGR0CXc1Qg9vCNaAdN6ANoCEdAqzvHFtKqXHV9lChoBkdAlPQLX18LKGgHTegDaAhHQKs9RuhK15V1fZQoaAZHQJBecS00FbFoB03oA2gIR0CrP91TBInSdX2UKGgGR0CRUSKvFFUiaAdN6ANoCEdAq0EdWn0kGHV9lChoBkdAkMru6Ae7tmgHTegDaAhHQKtL4KJl8PZ1fZQoaAZHQJOWkXuVopRoB03oA2gIR0CrTU6/RE4OdX2UKGgGR0CL5WfuCwr2aAdN6ANoCEdAq09RKFqSHXV9lChoBkdAklgn09QoC2gHTegDaAhHQKtQSxgRbr11fZQoaAZHQItkjfP5YYBoB03oA2gIR0CrWI5eJHiFdX2UKGgGR0CVgP5le4TcaAdN6ANoCEdAq1oOPV/c33V9lChoBkdAljjD3qRlpWgHTegDaAhHQKtcJfR/mT11fZQoaAZHQJcOjpljEvVoB03oA2gIR0CrXRDa4+bFdX2UKGgGR0CQwb+qioKlaAdN6ANoCEdAq2i4TK1XvHV9lChoBkdAiSOEZBLPEGgHTegDaAhHQKtqL1BdD6Z1fZQoaAZHQIx6Qgs9SuRoB03oA2gIR0CrbD1Li++NdX2UKGgGR0B1S7+fh/AkaAdN6ANoCEdAq20p5AyEc3V9lChoBkdAaWmVuaWonGgHTegDaAhHQKt1PyjpLVZ1fZQoaAZHQJR3sWoFV1hoB03oA2gIR0CrdrzK1XvIdX2UKGgGR0CVnh4H5aePaAdN6ANoCEdAq3jSgRK6F3V9lChoBkdAlPw1zhgmZ2gHTegDaAhHQKt5wCEHt4R1fZQoaAZHQIjvnIlt0mtoB03oA2gIR0CrhO/Ls8gZdX2UKGgGR0B2n0y2x6fKaAdN6ANoCEdAq4blDSgGr3V9lChoBkdAiCXX9JjDsWgHTegDaAhHQKuI5kdV/+d1fZQoaAZHQJarn1oQFs5oB03oA2gIR0Cridz37DVIdX2UKGgGR0CUD39GZuyeaAdN6ANoCEdAq5Iq4c3l0nV9lChoBkdAk/3UytV7yGgHTegDaAhHQKuTri4J/od1fZQoaAZHQIUTQFotcwBoB03oA2gIR0CrlcWNFSbZdX2UKGgGR0CV0MmoR7JGaAdN6ANoCEdAq5athXr+pHV9lChoBkdAdSXWJrLyMGgHTegDaAhHQKug9II4VAR1fZQoaAZHQI2IHustCiRoB03oA2gIR0Cro0cXm/34dX2UKGgGR0B4d9g0CRwIaAdN6ANoCEdAq6X446wMY3V9lChoBkdAiRQCYkVvdmgHTegDaAhHQKum4wX668R1fZQoaAZHQJKPCHqNZNhoB03oA2gIR0CrrxAHmig1dX2UKGgGR0BzHs/D+BH1aAdN6ANoCEdAq7CWe18b73V9lChoBkdAk1lWJBPbf2gHTegDaAhHQKuyo1ejVQR1fZQoaAZHQHx3fhhpg1FoB03oA2gIR0Crs4fHYHxCdX2UKGgGR0CN4eFA3T/iaAdN6ANoCEdAq7zJwS8J2XV9lChoBkdAjxxi79Q40mgHTegDaAhHQKu/Dd1uBMB1fZQoaAZHQHhM7+DOC5FoB03oA2gIR0Crwj/FaSs9dX2UKGgGR0CQwX5vtMPCaAdN6ANoCEdAq8OmTxG2C3V9lChoBkdAjwgEX+ERJ2gHTegDaAhHQKvLvsImgJ11fZQoaAZHQJLWCAbyYoloB03oA2gIR0CrzS+UY8+zdX2UKGgGR0CUky8O09haaAdN6ANoCEdAq89BrgwXZXV9lChoBkdAl3zPUnXummgHTegDaAhHQKvQMMLncL11fZQoaAZHQJgoR9w3o9toB03oA2gIR0Cr2HpN9H+ZdX2UKGgGR0CXBAfzSThYaAdN6ANoCEdAq9qGQCCBgHV9lChoBkdAlIE/YBeXzGgHTegDaAhHQKvdh3LV4HJ1fZQoaAZHQJqL2KR+z+poB03oA2gIR0Cr3unLidaudX2UKGgGR0CYvbogFHJ+aAdN6ANoCEdAq+g/kYGdJHV9lChoBkdAl2WasySFG2gHTegDaAhHQKvps+wC8vp1fZQoaAZHQJe3DT3IuGtoB03oA2gIR0Cr674wZflZdX2UKGgGR0CY1gXWOIZZaAdN6ANoCEdAq+yjQ3PzF3V9lChoBkdAmVnoDTz/ZWgHTegDaAhHQKv019H+ZPV1fZQoaAZHQJmQjmOlwcZoB03oA2gIR0Cr9lRUFSsKdX2UKGgGR0CbMZksjFAFaAdN6ANoCEdAq/kal7+kxnV9lChoBkdAmfoGTcIqsmgHTegDaAhHQKv6aieumrN1fZQoaAZHQJfzU8ZDRdBoB03oA2gIR0CsBRnwXqJNdX2UKGgGR0CaoHnjyWiUaAdN6ANoCEdArAaUhRqGlHV9lChoBkdAmO93l0YCQ2gHTegDaAhHQKwIpMYdhiN1fZQoaAZHQJnykmgJ1JVoB03oA2gIR0CsCYRqwhW6dX2UKGgGR0CcrDdcB2fTaAdN6ANoCEdArBHCdrftQnV9lChoBkdAl7llVghKUWgHTegDaAhHQKwTJTMqz7d1fZQoaAZHQJldTqIJqqRoB03oA2gIR0CsFSF6Rhc8dX2UKGgGR0Cdr656+nIiaAdN6ANoCEdArBZLLr5ZbXV9lChoBkdAnJhCed07sGgHTegDaAhHQKwhkzxgAp91fZQoaAZHQJe01r6+FlFoB03oA2gIR0CsIwm03Ov/dX2UKGgGR0Ce7/ek56t1aAdN6ANoCEdArCUMMiKR+3V9lChoBkdAn2Z0Ttb9qGgHTegDaAhHQKwl9y3CsOp1fZQoaAZHQJspAy0rsjVoB03oA2gIR0CsLhGL9/BndX2UKGgGR0CYGV6ciGFjaAdN6ANoCEdArC+CpeeFtnV9lChoBkdAlqNjguRLb2gHTegDaAhHQKwxgxFAmiR1fZQoaAZHQJvCXZWaMJhoB03oA2gIR0CsMm+KTB69dX2UKGgGR0CY3BVW0Z3taAdN6ANoCEdArD2YieNDMXV9lChoBkdAl6BswUQCjmgHTegDaAhHQKw/kTTvy9V1fZQoaAZHQJhkQdCE6DJoB03oA2gIR0CsQaLb5/LDdX2UKGgGR0Cb49LdvbXZaAdN6ANoCEdArEKP+0gKW3V9lChoBkdAmsyGY0EX+GgHTegDaAhHQKxKvyy2QXB1fZQoaAZHQJefOksSTQpoB03oA2gIR0CsTDxpDeCTdX2UKGgGR0CdUeUIcBEKaAdN6ANoCEdArE5KXD3ueHV9lChoBkdAncaYjGDL82gHTegDaAhHQKxPL06HTJB1fZQoaAZHQJmEK2x6fJ5oB03oA2gIR0CsWWO58Sf2dX2UKGgGR0CdJ36NVBD5aAdN6ANoCEdArFvEfYBeX3V9lChoBkdAnTGUlE7W/mgHTegDaAhHQKxep6IFeOZ1fZQoaAZHQJjdK7K7qY9oB03oA2gIR0CsX5CaAnUldX2UKGgGR0CY3tVhTfixaAdN6ANoCEdArGfSxZ+x4nV9lChoBkdAmzv1NYbKimgHTegDaAhHQKxpVQXQ+ll1fZQoaAZHQJSPaDQJHAhoB03oA2gIR0Csa2SBClabdX2UKGgGR0CaCKJrLyMDaAdN6ANoCEdArGxVrEcbSHV9lChoBkdAmwK/mYBvJmgHTegDaAhHQKx14d8Rcu91fZQoaAZHQJzhqkvboKVoB03oA2gIR0CseCY46wMZdX2UKGgGR0CaUM9deIEbaAdN6ANoCEdArHttzr/sFHV9lChoBkdAmOgpHEuQIWgHTegDaAhHQKx82lqJuVJ1fZQoaAZHQJZKG3y7PIJoB03oA2gIR0CshTJFCswMdX2UKGgGR0CaRTOjqOcUaAdN6ANoCEdArIa2QGOdXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35f2d3ca6739e65f7a36a2f7b2051216334bf617339b5d46e6fecff3f333fecd
|
3 |
+
size 1130761
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1621.7896298232372, "std_reward": 179.73339901688487, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T12:27:11.972524"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:587544f98e6d9ae58fd73dddabf0d58bb1af2c16d6f736b1ece074e2c3b66da9
|
3 |
+
size 2136
|