D0k-tor commited on
Commit
9b759ac
·
1 Parent(s): fdbc2d8

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1621.79 +/- 179.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc4755cd04e9c638cb31a73c2f7facc5b4433e35ca34a73fc127175008ca6305
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f2987c670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f2987c700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f2987c790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f2987c820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4f2987c8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4f2987c940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4f2987c9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f2987ca60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4f2987caf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f2987cb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f2987cc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f2987cca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f4f2987d940>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679225075848552151,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACUulT70Vg4/CRmPPjFPEUDy36S8phHoP87MTT8k3I6/MwczP3AvK76f/pe/3b0NwCALEj+p4hs/EIauPk7x7z9k5KA//Ykfv1kGGz9j0FS/7e9rvfay8b8gDSk/Rs5pP30cgL9reBA/5M3gPrPVkr/8GCY/OG3OPRY/DT+ybpE/CyhOv1L6CL8n1Wa9HHg5vyn/HD4lEfO+hRgIPtItFEDPu1U9/0+gv2UwGz61Tx6/FQKDv++O2L+h89c+gS+YvwY6zj6qmIe+gNOrP4cq7L59HIC/a3gQP+TN4D6z1ZK/t62GPnXxHz/vMmI+b5MKQFfm0D8j042/ekkLP+OGCb8hZjM/2g26P+dUfz5f1ihANMrGP9D8xb5lMx0/vPMLwAnikz8aPS+/9vGKPna9ZD9rIi+/0WecP2bXxD3GukW/fRyAv4zQ4r/kzeA+lClfP6yAz70PULk8ZKQUP2yDwj96a9U98yx8PkLE8T73iEW/3AEvP2jLTrwduM2+nspLvnRdNT/0zcw/MiYVP0y6pT/hdlk/4e/BP02zLz+P/cu7DUDwP5whTz/DOY4/T1dTP30cgL9reBA/5M3gPpQpXz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACPtyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvnzIPQAAAABwmtm/AAAAAEa1x7wAAAAA08LwPwAAAACJEvc9AAAAAAxa5z8AAAAAd2/KPQAAAAB1Gu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+eZiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJmmrb0AAAAAro/wvwAAAADhn1q9AAAAAIfZ5z8AAAAA4Qf2PQAAAACSSd4/AAAAAIrOOTsAAAAAuFXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXGNbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICTDBq8AAAAABSM978AAAAASpX2vQAAAAAwC+E/AAAAAIp9er0AAAAALt7jPwAAAAD6nVW9AAAAALZE578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAima41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/PGuvQAAAADwI9u/AAAAAAzYzz0AAAAA/AnzPwAAAADrDhU7AAAAAO8N8D8AAAAAuZQJPgAAAAD34ve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJO8vv8ZUDOMAWyUTegDjAF0lEdAqyPuL5ylvnV9lChoBkdAkIfRj4Hoo2gHTegDaAhHQKslUqZtvXN1fZQoaAZHQI/PgPbwjMVoB03oA2gIR0CrLy0+1SfldX2UKGgGR0CKr0BiCrcTaAdN6ANoCEdAqzCvexfOU3V9lChoBkdAksnDwYtQK2gHTegDaAhHQKsyyQrc0tR1fZQoaAZHQJVf6/BWPtFoB03oA2gIR0CrM7PSlWOqdX2UKGgGR0CXc1Qg9vCNaAdN6ANoCEdAqzvHFtKqXHV9lChoBkdAlPQLX18LKGgHTegDaAhHQKs9RuhK15V1fZQoaAZHQJBecS00FbFoB03oA2gIR0CrP91TBInSdX2UKGgGR0CRUSKvFFUiaAdN6ANoCEdAq0EdWn0kGHV9lChoBkdAkMru6Ae7tmgHTegDaAhHQKtL4KJl8PZ1fZQoaAZHQJOWkXuVopRoB03oA2gIR0CrTU6/RE4OdX2UKGgGR0CL5WfuCwr2aAdN6ANoCEdAq09RKFqSHXV9lChoBkdAklgn09QoC2gHTegDaAhHQKtQSxgRbr11fZQoaAZHQItkjfP5YYBoB03oA2gIR0CrWI5eJHiFdX2UKGgGR0CVgP5le4TcaAdN6ANoCEdAq1oOPV/c33V9lChoBkdAljjD3qRlpWgHTegDaAhHQKtcJfR/mT11fZQoaAZHQJcOjpljEvVoB03oA2gIR0CrXRDa4+bFdX2UKGgGR0CQwb+qioKlaAdN6ANoCEdAq2i4TK1XvHV9lChoBkdAiSOEZBLPEGgHTegDaAhHQKtqL1BdD6Z1fZQoaAZHQIx6Qgs9SuRoB03oA2gIR0CrbD1Li++NdX2UKGgGR0B1S7+fh/AkaAdN6ANoCEdAq20p5AyEc3V9lChoBkdAaWmVuaWonGgHTegDaAhHQKt1PyjpLVZ1fZQoaAZHQJR3sWoFV1hoB03oA2gIR0CrdrzK1XvIdX2UKGgGR0CVnh4H5aePaAdN6ANoCEdAq3jSgRK6F3V9lChoBkdAlPw1zhgmZ2gHTegDaAhHQKt5wCEHt4R1fZQoaAZHQIjvnIlt0mtoB03oA2gIR0CrhO/Ls8gZdX2UKGgGR0B2n0y2x6fKaAdN6ANoCEdAq4blDSgGr3V9lChoBkdAiCXX9JjDsWgHTegDaAhHQKuI5kdV/+d1fZQoaAZHQJarn1oQFs5oB03oA2gIR0Cridz37DVIdX2UKGgGR0CUD39GZuyeaAdN6ANoCEdAq5Iq4c3l0nV9lChoBkdAk/3UytV7yGgHTegDaAhHQKuTri4J/od1fZQoaAZHQIUTQFotcwBoB03oA2gIR0CrlcWNFSbZdX2UKGgGR0CV0MmoR7JGaAdN6ANoCEdAq5athXr+pHV9lChoBkdAdSXWJrLyMGgHTegDaAhHQKug9II4VAR1fZQoaAZHQI2IHustCiRoB03oA2gIR0Cro0cXm/34dX2UKGgGR0B4d9g0CRwIaAdN6ANoCEdAq6X446wMY3V9lChoBkdAiRQCYkVvdmgHTegDaAhHQKum4wX668R1fZQoaAZHQJKPCHqNZNhoB03oA2gIR0CrrxAHmig1dX2UKGgGR0BzHs/D+BH1aAdN6ANoCEdAq7CWe18b73V9lChoBkdAk1lWJBPbf2gHTegDaAhHQKuyo1ejVQR1fZQoaAZHQHx3fhhpg1FoB03oA2gIR0Crs4fHYHxCdX2UKGgGR0CN4eFA3T/iaAdN6ANoCEdAq7zJwS8J2XV9lChoBkdAjxxi79Q40mgHTegDaAhHQKu/Dd1uBMB1fZQoaAZHQHhM7+DOC5FoB03oA2gIR0Crwj/FaSs9dX2UKGgGR0CQwX5vtMPCaAdN6ANoCEdAq8OmTxG2C3V9lChoBkdAjwgEX+ERJ2gHTegDaAhHQKvLvsImgJ11fZQoaAZHQJLWCAbyYoloB03oA2gIR0CrzS+UY8+zdX2UKGgGR0CUky8O09haaAdN6ANoCEdAq89BrgwXZXV9lChoBkdAl3zPUnXummgHTegDaAhHQKvQMMLncL11fZQoaAZHQJgoR9w3o9toB03oA2gIR0Cr2HpN9H+ZdX2UKGgGR0CXBAfzSThYaAdN6ANoCEdAq9qGQCCBgHV9lChoBkdAlIE/YBeXzGgHTegDaAhHQKvdh3LV4HJ1fZQoaAZHQJqL2KR+z+poB03oA2gIR0Cr3unLidaudX2UKGgGR0CYvbogFHJ+aAdN6ANoCEdAq+g/kYGdJHV9lChoBkdAl2WasySFG2gHTegDaAhHQKvps+wC8vp1fZQoaAZHQJe3DT3IuGtoB03oA2gIR0Cr674wZflZdX2UKGgGR0CY1gXWOIZZaAdN6ANoCEdAq+yjQ3PzF3V9lChoBkdAmVnoDTz/ZWgHTegDaAhHQKv019H+ZPV1fZQoaAZHQJmQjmOlwcZoB03oA2gIR0Cr9lRUFSsKdX2UKGgGR0CbMZksjFAFaAdN6ANoCEdAq/kal7+kxnV9lChoBkdAmfoGTcIqsmgHTegDaAhHQKv6aieumrN1fZQoaAZHQJfzU8ZDRdBoB03oA2gIR0CsBRnwXqJNdX2UKGgGR0CaoHnjyWiUaAdN6ANoCEdArAaUhRqGlHV9lChoBkdAmO93l0YCQ2gHTegDaAhHQKwIpMYdhiN1fZQoaAZHQJnykmgJ1JVoB03oA2gIR0CsCYRqwhW6dX2UKGgGR0CcrDdcB2fTaAdN6ANoCEdArBHCdrftQnV9lChoBkdAl7llVghKUWgHTegDaAhHQKwTJTMqz7d1fZQoaAZHQJldTqIJqqRoB03oA2gIR0CsFSF6Rhc8dX2UKGgGR0Cdr656+nIiaAdN6ANoCEdArBZLLr5ZbXV9lChoBkdAnJhCed07sGgHTegDaAhHQKwhkzxgAp91fZQoaAZHQJe01r6+FlFoB03oA2gIR0CsIwm03Ov/dX2UKGgGR0Ce7/ek56t1aAdN6ANoCEdArCUMMiKR+3V9lChoBkdAn2Z0Ttb9qGgHTegDaAhHQKwl9y3CsOp1fZQoaAZHQJspAy0rsjVoB03oA2gIR0CsLhGL9/BndX2UKGgGR0CYGV6ciGFjaAdN6ANoCEdArC+CpeeFtnV9lChoBkdAlqNjguRLb2gHTegDaAhHQKwxgxFAmiR1fZQoaAZHQJvCXZWaMJhoB03oA2gIR0CsMm+KTB69dX2UKGgGR0CY3BVW0Z3taAdN6ANoCEdArD2YieNDMXV9lChoBkdAl6BswUQCjmgHTegDaAhHQKw/kTTvy9V1fZQoaAZHQJhkQdCE6DJoB03oA2gIR0CsQaLb5/LDdX2UKGgGR0Cb49LdvbXZaAdN6ANoCEdArEKP+0gKW3V9lChoBkdAmsyGY0EX+GgHTegDaAhHQKxKvyy2QXB1fZQoaAZHQJefOksSTQpoB03oA2gIR0CsTDxpDeCTdX2UKGgGR0CdUeUIcBEKaAdN6ANoCEdArE5KXD3ueHV9lChoBkdAncaYjGDL82gHTegDaAhHQKxPL06HTJB1fZQoaAZHQJmEK2x6fJ5oB03oA2gIR0CsWWO58Sf2dX2UKGgGR0CdJ36NVBD5aAdN6ANoCEdArFvEfYBeX3V9lChoBkdAnTGUlE7W/mgHTegDaAhHQKxep6IFeOZ1fZQoaAZHQJjdK7K7qY9oB03oA2gIR0CsX5CaAnUldX2UKGgGR0CY3tVhTfixaAdN6ANoCEdArGfSxZ+x4nV9lChoBkdAmzv1NYbKimgHTegDaAhHQKxpVQXQ+ll1fZQoaAZHQJSPaDQJHAhoB03oA2gIR0Csa2SBClabdX2UKGgGR0CaCKJrLyMDaAdN6ANoCEdArGxVrEcbSHV9lChoBkdAmwK/mYBvJmgHTegDaAhHQKx14d8Rcu91fZQoaAZHQJzhqkvboKVoB03oA2gIR0CseCY46wMZdX2UKGgGR0CaUM9deIEbaAdN6ANoCEdArHttzr/sFHV9lChoBkdAmOgpHEuQIWgHTegDaAhHQKx82lqJuVJ1fZQoaAZHQJZKG3y7PIJoB03oA2gIR0CshTJFCswMdX2UKGgGR0CaRTOjqOcUaAdN6ANoCEdArIa2QGOdXnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faad9f68cd733679e80cafb6cb8a5a8f690f73e5b61115594ee1fd80b8a04ca7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca1289fffca92a0af72b4d60623a7b25571a5e410479069e137cdf944390121b
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f2987c670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f2987c700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f2987c790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f2987c820>", "_build": "<function ActorCriticPolicy._build at 0x7f4f2987c8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f2987c940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4f2987c9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f2987ca60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f2987caf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f2987cb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f2987cc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f2987cca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4f2987d940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679225075848552151, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACUulT70Vg4/CRmPPjFPEUDy36S8phHoP87MTT8k3I6/MwczP3AvK76f/pe/3b0NwCALEj+p4hs/EIauPk7x7z9k5KA//Ykfv1kGGz9j0FS/7e9rvfay8b8gDSk/Rs5pP30cgL9reBA/5M3gPrPVkr/8GCY/OG3OPRY/DT+ybpE/CyhOv1L6CL8n1Wa9HHg5vyn/HD4lEfO+hRgIPtItFEDPu1U9/0+gv2UwGz61Tx6/FQKDv++O2L+h89c+gS+YvwY6zj6qmIe+gNOrP4cq7L59HIC/a3gQP+TN4D6z1ZK/t62GPnXxHz/vMmI+b5MKQFfm0D8j042/ekkLP+OGCb8hZjM/2g26P+dUfz5f1ihANMrGP9D8xb5lMx0/vPMLwAnikz8aPS+/9vGKPna9ZD9rIi+/0WecP2bXxD3GukW/fRyAv4zQ4r/kzeA+lClfP6yAz70PULk8ZKQUP2yDwj96a9U98yx8PkLE8T73iEW/3AEvP2jLTrwduM2+nspLvnRdNT/0zcw/MiYVP0y6pT/hdlk/4e/BP02zLz+P/cu7DUDwP5whTz/DOY4/T1dTP30cgL9reBA/5M3gPpQpXz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACPtyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvnzIPQAAAABwmtm/AAAAAEa1x7wAAAAA08LwPwAAAACJEvc9AAAAAAxa5z8AAAAAd2/KPQAAAAB1Gu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+eZiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJmmrb0AAAAAro/wvwAAAADhn1q9AAAAAIfZ5z8AAAAA4Qf2PQAAAACSSd4/AAAAAIrOOTsAAAAAuFXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXGNbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICTDBq8AAAAABSM978AAAAASpX2vQAAAAAwC+E/AAAAAIp9er0AAAAALt7jPwAAAAD6nVW9AAAAALZE578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAima41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/PGuvQAAAADwI9u/AAAAAAzYzz0AAAAA/AnzPwAAAADrDhU7AAAAAO8N8D8AAAAAuZQJPgAAAAD34ve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJO8vv8ZUDOMAWyUTegDjAF0lEdAqyPuL5ylvnV9lChoBkdAkIfRj4Hoo2gHTegDaAhHQKslUqZtvXN1fZQoaAZHQI/PgPbwjMVoB03oA2gIR0CrLy0+1SfldX2UKGgGR0CKr0BiCrcTaAdN6ANoCEdAqzCvexfOU3V9lChoBkdAksnDwYtQK2gHTegDaAhHQKsyyQrc0tR1fZQoaAZHQJVf6/BWPtFoB03oA2gIR0CrM7PSlWOqdX2UKGgGR0CXc1Qg9vCNaAdN6ANoCEdAqzvHFtKqXHV9lChoBkdAlPQLX18LKGgHTegDaAhHQKs9RuhK15V1fZQoaAZHQJBecS00FbFoB03oA2gIR0CrP91TBInSdX2UKGgGR0CRUSKvFFUiaAdN6ANoCEdAq0EdWn0kGHV9lChoBkdAkMru6Ae7tmgHTegDaAhHQKtL4KJl8PZ1fZQoaAZHQJOWkXuVopRoB03oA2gIR0CrTU6/RE4OdX2UKGgGR0CL5WfuCwr2aAdN6ANoCEdAq09RKFqSHXV9lChoBkdAklgn09QoC2gHTegDaAhHQKtQSxgRbr11fZQoaAZHQItkjfP5YYBoB03oA2gIR0CrWI5eJHiFdX2UKGgGR0CVgP5le4TcaAdN6ANoCEdAq1oOPV/c33V9lChoBkdAljjD3qRlpWgHTegDaAhHQKtcJfR/mT11fZQoaAZHQJcOjpljEvVoB03oA2gIR0CrXRDa4+bFdX2UKGgGR0CQwb+qioKlaAdN6ANoCEdAq2i4TK1XvHV9lChoBkdAiSOEZBLPEGgHTegDaAhHQKtqL1BdD6Z1fZQoaAZHQIx6Qgs9SuRoB03oA2gIR0CrbD1Li++NdX2UKGgGR0B1S7+fh/AkaAdN6ANoCEdAq20p5AyEc3V9lChoBkdAaWmVuaWonGgHTegDaAhHQKt1PyjpLVZ1fZQoaAZHQJR3sWoFV1hoB03oA2gIR0CrdrzK1XvIdX2UKGgGR0CVnh4H5aePaAdN6ANoCEdAq3jSgRK6F3V9lChoBkdAlPw1zhgmZ2gHTegDaAhHQKt5wCEHt4R1fZQoaAZHQIjvnIlt0mtoB03oA2gIR0CrhO/Ls8gZdX2UKGgGR0B2n0y2x6fKaAdN6ANoCEdAq4blDSgGr3V9lChoBkdAiCXX9JjDsWgHTegDaAhHQKuI5kdV/+d1fZQoaAZHQJarn1oQFs5oB03oA2gIR0Cridz37DVIdX2UKGgGR0CUD39GZuyeaAdN6ANoCEdAq5Iq4c3l0nV9lChoBkdAk/3UytV7yGgHTegDaAhHQKuTri4J/od1fZQoaAZHQIUTQFotcwBoB03oA2gIR0CrlcWNFSbZdX2UKGgGR0CV0MmoR7JGaAdN6ANoCEdAq5athXr+pHV9lChoBkdAdSXWJrLyMGgHTegDaAhHQKug9II4VAR1fZQoaAZHQI2IHustCiRoB03oA2gIR0Cro0cXm/34dX2UKGgGR0B4d9g0CRwIaAdN6ANoCEdAq6X446wMY3V9lChoBkdAiRQCYkVvdmgHTegDaAhHQKum4wX668R1fZQoaAZHQJKPCHqNZNhoB03oA2gIR0CrrxAHmig1dX2UKGgGR0BzHs/D+BH1aAdN6ANoCEdAq7CWe18b73V9lChoBkdAk1lWJBPbf2gHTegDaAhHQKuyo1ejVQR1fZQoaAZHQHx3fhhpg1FoB03oA2gIR0Crs4fHYHxCdX2UKGgGR0CN4eFA3T/iaAdN6ANoCEdAq7zJwS8J2XV9lChoBkdAjxxi79Q40mgHTegDaAhHQKu/Dd1uBMB1fZQoaAZHQHhM7+DOC5FoB03oA2gIR0Crwj/FaSs9dX2UKGgGR0CQwX5vtMPCaAdN6ANoCEdAq8OmTxG2C3V9lChoBkdAjwgEX+ERJ2gHTegDaAhHQKvLvsImgJ11fZQoaAZHQJLWCAbyYoloB03oA2gIR0CrzS+UY8+zdX2UKGgGR0CUky8O09haaAdN6ANoCEdAq89BrgwXZXV9lChoBkdAl3zPUnXummgHTegDaAhHQKvQMMLncL11fZQoaAZHQJgoR9w3o9toB03oA2gIR0Cr2HpN9H+ZdX2UKGgGR0CXBAfzSThYaAdN6ANoCEdAq9qGQCCBgHV9lChoBkdAlIE/YBeXzGgHTegDaAhHQKvdh3LV4HJ1fZQoaAZHQJqL2KR+z+poB03oA2gIR0Cr3unLidaudX2UKGgGR0CYvbogFHJ+aAdN6ANoCEdAq+g/kYGdJHV9lChoBkdAl2WasySFG2gHTegDaAhHQKvps+wC8vp1fZQoaAZHQJe3DT3IuGtoB03oA2gIR0Cr674wZflZdX2UKGgGR0CY1gXWOIZZaAdN6ANoCEdAq+yjQ3PzF3V9lChoBkdAmVnoDTz/ZWgHTegDaAhHQKv019H+ZPV1fZQoaAZHQJmQjmOlwcZoB03oA2gIR0Cr9lRUFSsKdX2UKGgGR0CbMZksjFAFaAdN6ANoCEdAq/kal7+kxnV9lChoBkdAmfoGTcIqsmgHTegDaAhHQKv6aieumrN1fZQoaAZHQJfzU8ZDRdBoB03oA2gIR0CsBRnwXqJNdX2UKGgGR0CaoHnjyWiUaAdN6ANoCEdArAaUhRqGlHV9lChoBkdAmO93l0YCQ2gHTegDaAhHQKwIpMYdhiN1fZQoaAZHQJnykmgJ1JVoB03oA2gIR0CsCYRqwhW6dX2UKGgGR0CcrDdcB2fTaAdN6ANoCEdArBHCdrftQnV9lChoBkdAl7llVghKUWgHTegDaAhHQKwTJTMqz7d1fZQoaAZHQJldTqIJqqRoB03oA2gIR0CsFSF6Rhc8dX2UKGgGR0Cdr656+nIiaAdN6ANoCEdArBZLLr5ZbXV9lChoBkdAnJhCed07sGgHTegDaAhHQKwhkzxgAp91fZQoaAZHQJe01r6+FlFoB03oA2gIR0CsIwm03Ov/dX2UKGgGR0Ce7/ek56t1aAdN6ANoCEdArCUMMiKR+3V9lChoBkdAn2Z0Ttb9qGgHTegDaAhHQKwl9y3CsOp1fZQoaAZHQJspAy0rsjVoB03oA2gIR0CsLhGL9/BndX2UKGgGR0CYGV6ciGFjaAdN6ANoCEdArC+CpeeFtnV9lChoBkdAlqNjguRLb2gHTegDaAhHQKwxgxFAmiR1fZQoaAZHQJvCXZWaMJhoB03oA2gIR0CsMm+KTB69dX2UKGgGR0CY3BVW0Z3taAdN6ANoCEdArD2YieNDMXV9lChoBkdAl6BswUQCjmgHTegDaAhHQKw/kTTvy9V1fZQoaAZHQJhkQdCE6DJoB03oA2gIR0CsQaLb5/LDdX2UKGgGR0Cb49LdvbXZaAdN6ANoCEdArEKP+0gKW3V9lChoBkdAmsyGY0EX+GgHTegDaAhHQKxKvyy2QXB1fZQoaAZHQJefOksSTQpoB03oA2gIR0CsTDxpDeCTdX2UKGgGR0CdUeUIcBEKaAdN6ANoCEdArE5KXD3ueHV9lChoBkdAncaYjGDL82gHTegDaAhHQKxPL06HTJB1fZQoaAZHQJmEK2x6fJ5oB03oA2gIR0CsWWO58Sf2dX2UKGgGR0CdJ36NVBD5aAdN6ANoCEdArFvEfYBeX3V9lChoBkdAnTGUlE7W/mgHTegDaAhHQKxep6IFeOZ1fZQoaAZHQJjdK7K7qY9oB03oA2gIR0CsX5CaAnUldX2UKGgGR0CY3tVhTfixaAdN6ANoCEdArGfSxZ+x4nV9lChoBkdAmzv1NYbKimgHTegDaAhHQKxpVQXQ+ll1fZQoaAZHQJSPaDQJHAhoB03oA2gIR0Csa2SBClabdX2UKGgGR0CaCKJrLyMDaAdN6ANoCEdArGxVrEcbSHV9lChoBkdAmwK/mYBvJmgHTegDaAhHQKx14d8Rcu91fZQoaAZHQJzhqkvboKVoB03oA2gIR0CseCY46wMZdX2UKGgGR0CaUM9deIEbaAdN6ANoCEdArHttzr/sFHV9lChoBkdAmOgpHEuQIWgHTegDaAhHQKx82lqJuVJ1fZQoaAZHQJZKG3y7PIJoB03oA2gIR0CshTJFCswMdX2UKGgGR0CaRTOjqOcUaAdN6ANoCEdArIa2QGOdXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35f2d3ca6739e65f7a36a2f7b2051216334bf617339b5d46e6fecff3f333fecd
3
+ size 1130761
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1621.7896298232372, "std_reward": 179.73339901688487, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T12:27:11.972524"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:587544f98e6d9ae58fd73dddabf0d58bb1af2c16d6f736b1ece074e2c3b66da9
3
+ size 2136