CLEX-7B-Chat-16K / configuration_llama_clex.py
Guanzheng's picture
Rename configuration_clex.py to configuration_llama_clex.py
202de7d verified
raw
history blame
7.8 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LLaMA model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers import LlamaConfig
logger = logging.get_logger(__name__)
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class CLEXLlamaConfig(LlamaConfig):
r"""
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LLaMA-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
pretraining_tp (`int`, *optional*, defaults to `1`):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
Example:
```python
>>> from transformers import LlamaModel, LlamaConfig
>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()
>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llama"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
rope_scaling=None,
use_flashattn=True,
log_scale=True,
**kwargs,
):
super().__init__(
**kwargs,
)
self.use_flashattn = use_flashattn
self.log_scale = log_scale
self.rope_theta = 10000
self.max_position_embeddings = 4096
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
# if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
# raise ValueError(
# "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
# f"got {self.rope_scaling}"
# )
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_max_factor = self.rope_scaling.get("max_factor", None)
rope_scaling_param_factor = self.rope_scaling.get("param_factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "clex"]:
raise ValueError(
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'clex'], got {rope_scaling_type}"
)
# if rope_scaling_max_factor is None or not isinstance(rope_scaling_max_factor, float) or rope_scaling_max_factor <= 1.0:
# raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_max_factor}")
# if rope_scaling_param_factor is None or not isinstance(rope_scaling_param_factor, float) or rope_scaling_param_factor <= 1.0:
# raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_param_factor}")