Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
---
|
7 |
+
# SeqGPT-560M
|
8 |
+
|
9 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
+
|
11 |
+
This is SeqGPT-560M weight, a compact model targeting open-domain Natural Language Understanding (NLU). We refer you to our github [repo](https://github.com/Alibaba-NLP/SeqGPT) for more details.
|
12 |
+
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
+
|
20 |
+
The model is fine-tuned based on [BLOOMZ-560M](https://huggingface.co/bigscience/bloomz-560m).
|
21 |
+
|
22 |
+
### Model Sources
|
23 |
+
|
24 |
+
<!-- Provide the basic links for the model. -->
|
25 |
+
|
26 |
+
- **Repository:** [SeqGPT](https://github.com/Alibaba-NLP/SeqGPT)
|
27 |
+
- **Paper:** [arxiv](https://arxiv.org/abs/2308.10529)
|
28 |
+
- **Demo:** [demo](https://www.modelscope.cn/studios/TTCoding/open_ner/summary)
|
29 |
+
|
30 |
+
## Uses
|
31 |
+
|
32 |
+
|
33 |
+
```py
|
34 |
+
import torch
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
|
36 |
+
|
37 |
+
model_name_or_path = 'Yirany/SeqGPT-560M'
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
|
40 |
+
tokenizer.padding_side = 'left'
|
41 |
+
tokenizer.truncation_side = 'left'
|
42 |
+
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
model = model.half().cuda()
|
45 |
+
model.eval()
|
46 |
+
GEN_TOK = '[GEN]'
|
47 |
+
|
48 |
+
while True:
|
49 |
+
sent = input('输入/Input: ').strip()
|
50 |
+
task = input('分类/classify press 1, 抽取/extract press 2: ').strip()
|
51 |
+
labels = input('标签集/Label-Set (e.g, labelA,LabelB,LabelC): ').strip().replace(',', ',')
|
52 |
+
task = '分类' if task == '1' else '抽取'
|
53 |
+
|
54 |
+
# Changing the instruction can harm the performance
|
55 |
+
p = '输入: {}\n{}: {}\n输出: {}'.format(sent, task, labels, GEN_TOK)
|
56 |
+
input_ids = tokenizer(p, return_tensors="pt", padding=True, truncation=True, max_length=1024)
|
57 |
+
input_ids = input_ids.to(model.device)
|
58 |
+
outputs = model.generate(**input_ids, num_beams=4, do_sample=False, max_new_tokens=256)
|
59 |
+
input_ids = input_ids.get('input_ids', input_ids)
|
60 |
+
outputs = outputs[0][len(input_ids[0]):]
|
61 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
62 |
+
print('BOT: ========== \n{}'.format(response))
|
63 |
+
```
|