--- license: apache-2.0 language: - en - zh inference: false --- # SeqGPT-560M This is SeqGPT-560M weight, a compact model targeting open-domain Natural Language Understanding (NLU). We refer you to our github [repo](https://github.com/Alibaba-NLP/SeqGPT) for more details. ## Model Details ### Model Description The model is fine-tuned based on [BLOOMZ-560M](https://huggingface.co/bigscience/bloomz-560m). ### Model Sources - **Repository:** [SeqGPT](https://github.com/Alibaba-NLP/SeqGPT) - **Paper:** [arxiv](https://arxiv.org/abs/2308.10529) - **Demo:** [demo](https://www.modelscope.cn/studios/TTCoding/open_ner/summary) ## Uses ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel model_name_or_path = 'DAMO-NLP/SeqGPT-560M' tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) tokenizer.padding_side = 'left' tokenizer.truncation_side = 'left' if torch.cuda.is_available(): model = model.half().cuda() model.eval() GEN_TOK = '[GEN]' while True: sent = input('输入/Input: ').strip() task = input('分类/classify press 1, 抽取/extract press 2: ').strip() labels = input('标签集/Label-Set (e.g, labelA,LabelB,LabelC): ').strip().replace(',', ',') task = '分类' if task == '1' else '抽取' # Changing the instruction can harm the performance p = '输入: {}\n{}: {}\n输出: {}'.format(sent, task, labels, GEN_TOK) input_ids = tokenizer(p, return_tensors="pt", padding=True, truncation=True, max_length=1024) input_ids = input_ids.to(model.device) outputs = model.generate(**input_ids, num_beams=4, do_sample=False, max_new_tokens=256) input_ids = input_ids.get('input_ids', input_ids) outputs = outputs[0][len(input_ids[0]):] response = tokenizer.decode(outputs, skip_special_tokens=True) print('BOT: ========== \n{}'.format(response)) ```