--- license: llama3.2 language: - en base_model: - meta-llama/Llama-3.2-1B pipeline_tag: text-classification library_name: transformers tags: - regression - story-point-estimation - software-engineering datasets: - mulestudio - titanium metrics: - mae - mdae model-index: - name: llama-3.2-1b-story-point-estimation results: - task: type: regression name: Story Point Estimation dataset: type: titanium name: titanium Dataset split: test metrics: - type: mae value: 3.652 name: Mean Absolute Error (MAE) - type: mdae value: 2.105 name: Median Absolute Error (MdAE) --- # LLAMA 3 Story Point Estimator - mulestudio - titanium This model is fine-tuned on issue descriptions from mulestudio and tested on titanium for story point estimation. ## Model Details - Base Model: LLAMA 3.2 1B - Training Project: mulestudio - Test Project: titanium - Task: Story Point Estimation (Regression) - Architecture: PEFT (LoRA) - Input: Issue titles - Output: Story point estimation (continuous value) ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer from peft import PeftModel # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/000-LLAMA3SP-mulestudio-titanium") model = AutoModelForSequenceClassification.from_pretrained("DEVCamiloSepulveda/000-LLAMA3SP-mulestudio-titanium") # Prepare input text text = "Your issue description here" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length") # Get prediction outputs = model(**inputs) story_points = outputs.logits.item() ``` ## Training Details - Fine-tuning method: LoRA (Low-Rank Adaptation) - Sequence length: 20 tokens - Best training epoch: 3 / 20 epochs - Batch size: 32 - Training time: 162.250 seconds - Mean Absolute Error (MAE): 3.652 - Median Absolute Error (MdAE): 2.105