--- base_model: - black-forest-labs/FLUX.1-Kontext-dev base_model_relation: quantized pipeline_tag: text-to-image tags: - dfloat11 - df11 - lossless compression - 70% size, 100% accuracy --- # DFloat11 Compressed Model: `black-forest-labs/FLUX.1-Kontext-dev` This is a **DFloat11 losslessly compressed** version of the original `black-forest-labs/FLUX.1-Kontext-dev` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. 🔥🔥🔥 Thanks to DFloat11 compression, FLUX.1-Kontext-dev can now run smoothly on a single 24GB GPU without any quality loss. 🔥🔥🔥 ### 📊 Performance Comparison | Metric | FLUX.1-Kontext-dev (BFloat16) | FLUX.1-Kontext-dev (DFloat11) | | ----------------------------------------------- | ------------------- | ------------------- | | Model Size | 23.80 GB | 16.33 GB | | Peak GPU Memory
(1024×1024 image generation) | 24.86 GB | 18.12 GB | | Generation Time
(A100 GPU) | 72 seconds | 83 seconds | ### 🔧 How to Use 1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: ```bash pip install -U dfloat11[cuda12] # or if you have CUDA version 11: # pip install -U dfloat11[cuda11] ``` 2. Install diffusers from the main branch until future stable release. ```bash pip install git+https://github.com/huggingface/diffusers.git ``` 3. To use the DFloat11 model, run the following example code in Python: ```python import torch from diffusers import FluxKontextPipeline from diffusers.utils import load_image from dfloat11 import DFloat11Model pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16) DFloat11Model.from_pretrained( "DFloat11/FLUX.1-Kontext-dev-DF11", device="cpu", bfloat16_model=pipe.transformer, ) pipe.enable_model_cpu_offload() input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png") image = pipe( image=input_image, prompt="Add a hat to the cat", guidance_scale=2.5, ).images[0] image.save("kontext.png") ``` ### 🔍 How It Works We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. Learn more in our [research paper](https://arxiv.org/abs/2504.11651). ### 📄 Learn More * **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) * **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) * **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)