Update README.md
Browse files
README.md
CHANGED
@@ -41,13 +41,12 @@ Use the code below to get started with the model.
|
|
41 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
import torch
|
43 |
|
44 |
-
model = AutoModelForCausalLM.from_pretrained("DIAG-PSSeng/cicero_v2-phi1.5", torch_dtype=torch.float16).to("cuda")
|
45 |
|
46 |
tokenizer = AutoTokenizer.from_pretrained("DIAG-PSSeng/cicero_v2-phi1.5", trust_remote_code=True)
|
47 |
|
48 |
def generate_text(model, tokenizer, prompt, length=50, do_sample=True):
|
49 |
-
|
50 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
51 |
gen_tokens = model.generate(**inputs,do_sample=True,temperature=0.9, min_length=length,max_length=length)
|
52 |
generated_text = tokenizer.batch_decode(gen_tokens)
|
53 |
return generated_text
|
|
|
41 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
import torch
|
43 |
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("DIAG-PSSeng/cicero_v2-phi1.5", trust_remote_code=True ,torch_dtype=torch.float16).to("cuda")
|
45 |
|
46 |
tokenizer = AutoTokenizer.from_pretrained("DIAG-PSSeng/cicero_v2-phi1.5", trust_remote_code=True)
|
47 |
|
48 |
def generate_text(model, tokenizer, prompt, length=50, do_sample=True):
|
49 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
|
|
50 |
gen_tokens = model.generate(**inputs,do_sample=True,temperature=0.9, min_length=length,max_length=length)
|
51 |
generated_text = tokenizer.batch_decode(gen_tokens)
|
52 |
return generated_text
|