DJDonovan commited on
Commit
220bf26
·
1 Parent(s): f60ddcb

Upload PPO LunarLander-v2 trained agent

Browse files
Lunars-Fourth-Flight.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1f745179ca350555844dfffc9885e178c41a26d74e6c42807ad4653079899fa
3
+ size 147407
Lunars-Fourth-Flight/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
Lunars-Fourth-Flight/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58eae5bb80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58eae5bc10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58eae5bca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58eae5bd30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f58eae5bdc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f58eae5be50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58eae5bee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58eae5bf70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f58eae61040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58eae610d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58eae61160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58eae611f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f58eae60500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 638976,
47
+ "_total_timesteps": 2000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678673810496757949,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr7O7zDiSG6lBmvudGoS7Zth6i6YO65NQAAgD8AAIA/5k8OPbsArrxw6GW8ZDMqPLX+0r333sa9AACAPwAAgD8zw6I8wF6rP3s4Pz2m28a+vV+GvPa3grwAAAAAAAAAADNs1j2eJMI+y1oVvqaxbr55uuY8nlsBvgAAAAAAAAAAJgi8vVyPbboVzdi6D9LptUOgITuyn/05AAAAAAAAgD+a07E9CkcCOqTMQrlWnxg2/ydru9BZYjgAAIA/AACAPzNlFr5pmgy87vFCOikD0DfZlnc9EOV3uQAAgD8AAIA/M29FvK7ZhbomEnO7DX2dNYKBRbs0RI06AACAPwAAgD8AHMa9IfMbP/Mhtj6p4de+D5YKPnr7bj4AAAAAAAAAAACb/LxSwP65RmUSu2lQobXOoIE6xjgpOgAAgD8AAIA/M5CJPFw7N7rJRaC6egybtQegLToBLL45AACAPwAAgD/m2Va99nAOunwDOjxR+bQ2R/syO6darTUAAIA/AACAPzOGLb32dDG6OFisO3O5V7a7oMI6oE3IugAAgD8AAIA/82uxvcMpErpbW8i7VuYoOBErCrr+FaK2AAAAAAAAgD+abRM85KuxPnbhhDztr7C+gJq3Owl8hb0AAAAAAAAAADNDUbz2dEm6ErBqu5UXXjnkuUQ7btyPuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": 0.680512,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJO1GH/NZNUCUhpRSlIwBbJRLzowBdJRHQIay9Y2bXpZ1fZQoaAZoCWgPQwgPDCB8KLVXQJSGlFKUaBVN6ANoFkdAhrU6gM+eOHV9lChoBmgJaA9DCDofniVIaWBAlIaUUpRoFU3oA2gWR0CGuv9Sde6adX2UKGgGaAloD0MINiBCXDmDWUCUhpRSlGgVTegDaBZHQIa+8PYnOSp1fZQoaAZoCWgPQwi/Q1Ggz0RiQJSGlFKUaBVN6ANoFkdAhsbF72L5ynV9lChoBmgJaA9DCLzP8dFi22BAlIaUUpRoFU3oA2gWR0CGy5tPYWcjdX2UKGgGaAloD0MIQpYFE38zX0CUhpRSlGgVTegDaBZHQIbWu29cry11fZQoaAZoCWgPQwhtqu6RTSRiQJSGlFKUaBVN6ANoFkdAht0r1dxAB3V9lChoBmgJaA9DCMKlY84zRh5AlIaUUpRoFUvGaBZHQIbf84vN/vx1fZQoaAZoCWgPQwjFkQciixddQJSGlFKUaBVN6ANoFkdAhul3os7MgXV9lChoBmgJaA9DCCpTzEFQiWJAlIaUUpRoFU3oA2gWR0CG7BShrWRSdX2UKGgGaAloD0MIT85Q3HGWYkCUhpRSlGgVTegDaBZHQIbw+PLgXM11fZQoaAZoCWgPQwiYTYBhebFoQJSGlFKUaBVN6ANoFkdAhvf04aP0ZnV9lChoBmgJaA9DCBR7aB8rPWFAlIaUUpRoFU3oA2gWR0CHSwU3XI2gdX2UKGgGaAloD0MIz6RN1T2CaECUhpRSlGgVTegDaBZHQIdaBE+gUUR1fZQoaAZoCWgPQwiqDU5Ev2FiQJSGlFKUaBVN6ANoFkdAh2YYaYNRWXV9lChoBmgJaA9DCEUsYtjhtWZAlIaUUpRoFU3oA2gWR0CHZyhW5paidX2UKGgGaAloD0MI0m70MR8cYkCUhpRSlGgVTegDaBZHQIdzZuVHFxZ1fZQoaAZoCWgPQwji5elcUcljQJSGlFKUaBVN6ANoFkdAh3btu+AVf3V9lChoBmgJaA9DCBiXqrRFtGFAlIaUUpRoFU3oA2gWR0CHgBoNd7fIdX2UKGgGaAloD0MIArfu5qkYYUCUhpRSlGgVTegDaBZHQIeGDtgKF7F1fZQoaAZoCWgPQwiveysSEwZkQJSGlFKUaBVN6ANoFkdAh45QP7N0NnV9lChoBmgJaA9DCHh7EALyD19AlIaUUpRoFU3oA2gWR0CHn/9Tgl4UdX2UKGgGaAloD0MI1NUdi22BY0CUhpRSlGgVTegDaBZHQIenGKoAGSp1fZQoaAZoCWgPQwgdrP9zGIlkQJSGlFKUaBVN6ANoFkdAh6n3pW3jMnV9lChoBmgJaA9DCMb6Bia3b2FAlIaUUpRoFU3oA2gWR0CHsYBS1maqdX2UKGgGaAloD0MIIa8Hk+ITZkCUhpRSlGgVTegDaBZHQIezXWlMyrR1fZQoaAZoCWgPQwjba0Hvjb5mQJSGlFKUaBVN6ANoFkdAh7aEYXO4X3V9lChoBmgJaA9DCJBnl299YmZAlIaUUpRoFU3oA2gWR0CHuxpW3jMndX2UKGgGaAloD0MI/RGGAUuLXECUhpRSlGgVTegDaBZHQIgKkuYhMal1fZQoaAZoCWgPQwgN4ZhlT4pkQJSGlFKUaBVN6ANoFkdAiBPStvGZNXV9lChoBmgJaA9DCPTcQlei9GJAlIaUUpRoFU3oA2gWR0CIHGMrmQr+dX2UKGgGaAloD0MITBx5IDKDZECUhpRSlGgVTegDaBZHQIgdJ+OOsDJ1fZQoaAZoCWgPQwj26053HkFnQJSGlFKUaBVN6ANoFkdAiCU0UO/cnHV9lChoBmgJaA9DCBeDh2lfrmNAlIaUUpRoFU3oA2gWR0CIJ3np0OmSdX2UKGgGaAloD0MICyk/qfZIWUCUhpRSlGgVS9poFkdAiCmo9C/oJXV9lChoBmgJaA9DCKCnAYMk+GJAlIaUUpRoFU3oA2gWR0CILMzBRAKOdX2UKGgGaAloD0MIX16AfXS3ZECUhpRSlGgVTegDaBZHQIgwT5GjKxN1fZQoaAZoCWgPQwiCcAUU6i06QJSGlFKUaBVL1WgWR0CIMQAmzBykdX2UKGgGaAloD0MI+boM/2ncZUCUhpRSlGgVTegDaBZHQIg3AqiGnGd1fZQoaAZoCWgPQwi5OZUMAF1PwJSGlFKUaBVLc2gWR0CIOqXhwVCYdX2UKGgGaAloD0MIZvm6DP+BYECUhpRSlGgVTegDaBZHQIhF+aa1Cw91fZQoaAZoCWgPQwhbejTVk0VnQJSGlFKUaBVN6ANoFkdAiExbCJoCdXV9lChoBmgJaA9DCGo0uRgDQGRAlIaUUpRoFU3oA2gWR0CITyxXXAdodX2UKGgGaAloD0MIbAn5oOd8YkCUhpRSlGgVTegDaBZHQIhZGvMbFS91fZQoaAZoCWgPQwjQDyOER9RjQJSGlFKUaBVN6ANoFkdAiFupd8iOenV9lChoBmgJaA9DCGTrGcKxZ2FAlIaUUpRoFU3oA2gWR0CIYAz3RG+cdX2UKGgGaAloD0MIQIS4cvYFY0CUhpRSlGgVTegDaBZHQIhnAGKQ7tB1fZQoaAZoCWgPQwjq6/ma5SFjQJSGlFKUaBVN6ANoFkdAiLjTcZccEXV9lChoBmgJaA9DCE1qaAOw1WZAlIaUUpRoFU3oA2gWR0CI053MY/FBdX2UKGgGaAloD0MIwopTrQXDYkCUhpRSlGgVTegDaBZHQIjiN7SiM5x1fZQoaAZoCWgPQwgddAmH3g5kQJSGlFKUaBVN6ANoFkdAiOXlN+LFXXV9lChoBmgJaA9DCLoRFhXxamJAlIaUUpRoFU3oA2gWR0CI6cH2ys0YdX2UKGgGaAloD0MIvD5z1ictY0CUhpRSlGgVTegDaBZHQIjvGjKxLTR1fZQoaAZoCWgPQwgFxY8x99pkQJSGlFKUaBVN6ANoFkdAiPQM54nndXV9lChoBmgJaA9DCOny5nCtaGZAlIaUUpRoFU3oA2gWR0CI+3sAvL5idX2UKGgGaAloD0MI7uh/uRZSY0CUhpRSlGgVTegDaBZHQIj/jNW2gFp1fZQoaAZoCWgPQwgXR+Um6uxiQJSGlFKUaBVN6ANoFkdAiQrPE87p3XV9lChoBmgJaA9DCCdok8On7GNAlIaUUpRoFU3oA2gWR0CJERZVXFLndX2UKGgGaAloD0MIK6ORz6vVZECUhpRSlGgVTegDaBZHQIkTmJaaCtl1fZQoaAZoCWgPQwhTBDi9C6ZlQJSGlFKUaBVN6ANoFkdAiRpjgZTAFnV9lChoBmgJaA9DCH3KMVncE2dAlIaUUpRoFU3oA2gWR0CJHBj4pMHsdX2UKGgGaAloD0MIAP+UKlFpXECUhpRSlGgVTegDaBZHQIkfRWvKU3Z1fZQoaAZoCWgPQwhORSqMLQJoQJSGlFKUaBVN6ANoFkdAiSQcB2fTTnV9lChoBmgJaA9DCO6UDtb/sTFAlIaUUpRoFUvgaBZHQIkpX0Eovzx1fZQoaAZoCWgPQwhKfsSv2FhjQJSGlFKUaBVN6ANoFkdAiXO4G+sYEXV9lChoBmgJaA9DCBHfiVmvVmRAlIaUUpRoFU3oA2gWR0CJhnU5uIhydX2UKGgGaAloD0MIkWEVb2RkY0CUhpRSlGgVTegDaBZHQImQwvN/vv11fZQoaAZoCWgPQwhcWDfenehhQJSGlFKUaBVN6ANoFkdAiZNIEr5IpnV9lChoBmgJaA9DCIvFbwqrtGJAlIaUUpRoFU3oA2gWR0CJler6LwWndX2UKGgGaAloD0MIqUpbXGP0YkCUhpRSlGgVTegDaBZHQImZmJtSAH51fZQoaAZoCWgPQwgi/8wgPl1lQJSGlFKUaBVN6ANoFkdAiZ1hnjABUHV9lChoBmgJaA9DCPERMSUSumRAlIaUUpRoFU3oA2gWR0CJpOj1wo9cdX2UKGgGaAloD0MIdJmaBG88ZUCUhpRSlGgVTegDaBZHQImpCDZlFtt1fZQoaAZoCWgPQwhiTWVR2AthQJSGlFKUaBVN6ANoFkdAibUVEuxrz3V9lChoBmgJaA9DCDC45o7+cWVAlIaUUpRoFU3oA2gWR0CJvIruIAOsdX2UKGgGaAloD0MI3+ALkyluZ0CUhpRSlGgVTegDaBZHQInMEZ1mrbR1fZQoaAZoCWgPQwj6ff/mRVllQJSGlFKUaBVN6ANoFkdAic8MPrfLtHV9lChoBmgJaA9DCPLtXYM+EmRAlIaUUpRoFU3oA2gWR0CJ1FCxeLNwdX2UKGgGaAloD0MILQWk/Y9PaECUhpRSlGgVTegDaBZHQInb3qkdmxt1fZQoaAZoCWgPQwjZJ4BiZC5mQJSGlFKUaBVN6ANoFkdAieQij1wo9nV9lChoBmgJaA9DCECjdOlfWWVAlIaUUpRoFU3oA2gWR0CJ6labF0gbdX2UKGgGaAloD0MIW2H6XkM4ZkCUhpRSlGgVTegDaBZHQIpH3H/95yF1fZQoaAZoCWgPQwhszVZechFnQJSGlFKUaBVN6ANoFkdAileWzF+/g3V9lChoBmgJaA9DCP4qwHebqmRAlIaUUpRoFU3oA2gWR0CKW5wn6VMVdX2UKGgGaAloD0MIMQvtnOaHYkCUhpRSlGgVTegDaBZHQIpf170Fr2x1fZQoaAZoCWgPQwgxQ+OJIGRmQJSGlFKUaBVN6ANoFkdAimTYWk8A73V9lChoBmgJaA9DCGJlNPL5gWFAlIaUUpRoFU3oA2gWR0CKaTnied08dX2UKGgGaAloD0MIL8IU5dKLYkCUhpRSlGgVTegDaBZHQIpxRz5oGpx1fZQoaAZoCWgPQwjVlGQdjvRHQJSGlFKUaBVLs2gWR0CKc1xiG34LdX2UKGgGaAloD0MIvMywUVY6YkCUhpRSlGgVTegDaBZHQIp1YFaB7NV1fZQoaAZoCWgPQwjYfjLGB2dkQJSGlFKUaBVN6ANoFkdAioEWpyZKF3V9lChoBmgJaA9DCEHYKVaNi2FAlIaUUpRoFU3oA2gWR0CKh5qptJnQdX2UKGgGaAloD0MIqKym64lnZ0CUhpRSlGgVTegDaBZHQIqSBArxy4p1fZQoaAZoCWgPQwgbYye8hHhgQJSGlFKUaBVN6ANoFkdAipQDnNgSe3V9lChoBmgJaA9DCKkz95DwSWZAlIaUUpRoFU3oA2gWR0CKl1ta6jFidX2UKGgGaAloD0MIelORCmMgYkCUhpRSlGgVTegDaBZHQIqcLsIE8q51fZQoaAZoCWgPQwhvgQTFj/VNQJSGlFKUaBVL4mgWR0CKnwKdhAnldX2UKGgGaAloD0MIR6ta0lHLZECUhpRSlGgVTegDaBZHQIqhRJbt7a91fZQoaAZoCWgPQwhblq/LcDhgQJSGlFKUaBVN6ANoFkdAiqb7iQ1aXHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 228,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 6,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
Lunars-Fourth-Flight/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbee45a275c941367793415d422caa45b78467048df231a2fcc6147b46041bc9
3
+ size 87929
Lunars-Fourth-Flight/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b4d019e67bf527cb605eb07c709b2543e7742b5b4569bfbd9bcd53f5f866ea0
3
+ size 43393
Lunars-Fourth-Flight/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunars-Fourth-Flight/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.45 +/- 24.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58eae5bb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58eae5bc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58eae5bca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58eae5bd30>", "_build": "<function ActorCriticPolicy._build at 0x7f58eae5bdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f58eae5be50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58eae5bee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58eae5bf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f58eae61040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58eae610d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58eae61160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58eae611f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f58eae60500>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 638976, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678673810496757949, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr7O7zDiSG6lBmvudGoS7Zth6i6YO65NQAAgD8AAIA/5k8OPbsArrxw6GW8ZDMqPLX+0r333sa9AACAPwAAgD8zw6I8wF6rP3s4Pz2m28a+vV+GvPa3grwAAAAAAAAAADNs1j2eJMI+y1oVvqaxbr55uuY8nlsBvgAAAAAAAAAAJgi8vVyPbboVzdi6D9LptUOgITuyn/05AAAAAAAAgD+a07E9CkcCOqTMQrlWnxg2/ydru9BZYjgAAIA/AACAPzNlFr5pmgy87vFCOikD0DfZlnc9EOV3uQAAgD8AAIA/M29FvK7ZhbomEnO7DX2dNYKBRbs0RI06AACAPwAAgD8AHMa9IfMbP/Mhtj6p4de+D5YKPnr7bj4AAAAAAAAAAACb/LxSwP65RmUSu2lQobXOoIE6xjgpOgAAgD8AAIA/M5CJPFw7N7rJRaC6egybtQegLToBLL45AACAPwAAgD/m2Va99nAOunwDOjxR+bQ2R/syO6darTUAAIA/AACAPzOGLb32dDG6OFisO3O5V7a7oMI6oE3IugAAgD8AAIA/82uxvcMpErpbW8i7VuYoOBErCrr+FaK2AAAAAAAAgD+abRM85KuxPnbhhDztr7C+gJq3Owl8hb0AAAAAAAAAADNDUbz2dEm6ErBqu5UXXjnkuUQ7btyPuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.680512, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJO1GH/NZNUCUhpRSlIwBbJRLzowBdJRHQIay9Y2bXpZ1fZQoaAZoCWgPQwgPDCB8KLVXQJSGlFKUaBVN6ANoFkdAhrU6gM+eOHV9lChoBmgJaA9DCDofniVIaWBAlIaUUpRoFU3oA2gWR0CGuv9Sde6adX2UKGgGaAloD0MINiBCXDmDWUCUhpRSlGgVTegDaBZHQIa+8PYnOSp1fZQoaAZoCWgPQwi/Q1Ggz0RiQJSGlFKUaBVN6ANoFkdAhsbF72L5ynV9lChoBmgJaA9DCLzP8dFi22BAlIaUUpRoFU3oA2gWR0CGy5tPYWcjdX2UKGgGaAloD0MIQpYFE38zX0CUhpRSlGgVTegDaBZHQIbWu29cry11fZQoaAZoCWgPQwhtqu6RTSRiQJSGlFKUaBVN6ANoFkdAht0r1dxAB3V9lChoBmgJaA9DCMKlY84zRh5AlIaUUpRoFUvGaBZHQIbf84vN/vx1fZQoaAZoCWgPQwjFkQciixddQJSGlFKUaBVN6ANoFkdAhul3os7MgXV9lChoBmgJaA9DCCpTzEFQiWJAlIaUUpRoFU3oA2gWR0CG7BShrWRSdX2UKGgGaAloD0MIT85Q3HGWYkCUhpRSlGgVTegDaBZHQIbw+PLgXM11fZQoaAZoCWgPQwiYTYBhebFoQJSGlFKUaBVN6ANoFkdAhvf04aP0ZnV9lChoBmgJaA9DCBR7aB8rPWFAlIaUUpRoFU3oA2gWR0CHSwU3XI2gdX2UKGgGaAloD0MIz6RN1T2CaECUhpRSlGgVTegDaBZHQIdaBE+gUUR1fZQoaAZoCWgPQwiqDU5Ev2FiQJSGlFKUaBVN6ANoFkdAh2YYaYNRWXV9lChoBmgJaA9DCEUsYtjhtWZAlIaUUpRoFU3oA2gWR0CHZyhW5paidX2UKGgGaAloD0MI0m70MR8cYkCUhpRSlGgVTegDaBZHQIdzZuVHFxZ1fZQoaAZoCWgPQwji5elcUcljQJSGlFKUaBVN6ANoFkdAh3btu+AVf3V9lChoBmgJaA9DCBiXqrRFtGFAlIaUUpRoFU3oA2gWR0CHgBoNd7fIdX2UKGgGaAloD0MIArfu5qkYYUCUhpRSlGgVTegDaBZHQIeGDtgKF7F1fZQoaAZoCWgPQwiveysSEwZkQJSGlFKUaBVN6ANoFkdAh45QP7N0NnV9lChoBmgJaA9DCHh7EALyD19AlIaUUpRoFU3oA2gWR0CHn/9Tgl4UdX2UKGgGaAloD0MI1NUdi22BY0CUhpRSlGgVTegDaBZHQIenGKoAGSp1fZQoaAZoCWgPQwgdrP9zGIlkQJSGlFKUaBVN6ANoFkdAh6n3pW3jMnV9lChoBmgJaA9DCMb6Bia3b2FAlIaUUpRoFU3oA2gWR0CHsYBS1maqdX2UKGgGaAloD0MIIa8Hk+ITZkCUhpRSlGgVTegDaBZHQIezXWlMyrR1fZQoaAZoCWgPQwjba0Hvjb5mQJSGlFKUaBVN6ANoFkdAh7aEYXO4X3V9lChoBmgJaA9DCJBnl299YmZAlIaUUpRoFU3oA2gWR0CHuxpW3jMndX2UKGgGaAloD0MI/RGGAUuLXECUhpRSlGgVTegDaBZHQIgKkuYhMal1fZQoaAZoCWgPQwgN4ZhlT4pkQJSGlFKUaBVN6ANoFkdAiBPStvGZNXV9lChoBmgJaA9DCPTcQlei9GJAlIaUUpRoFU3oA2gWR0CIHGMrmQr+dX2UKGgGaAloD0MITBx5IDKDZECUhpRSlGgVTegDaBZHQIgdJ+OOsDJ1fZQoaAZoCWgPQwj26053HkFnQJSGlFKUaBVN6ANoFkdAiCU0UO/cnHV9lChoBmgJaA9DCBeDh2lfrmNAlIaUUpRoFU3oA2gWR0CIJ3np0OmSdX2UKGgGaAloD0MICyk/qfZIWUCUhpRSlGgVS9poFkdAiCmo9C/oJXV9lChoBmgJaA9DCKCnAYMk+GJAlIaUUpRoFU3oA2gWR0CILMzBRAKOdX2UKGgGaAloD0MIX16AfXS3ZECUhpRSlGgVTegDaBZHQIgwT5GjKxN1fZQoaAZoCWgPQwiCcAUU6i06QJSGlFKUaBVL1WgWR0CIMQAmzBykdX2UKGgGaAloD0MI+boM/2ncZUCUhpRSlGgVTegDaBZHQIg3AqiGnGd1fZQoaAZoCWgPQwi5OZUMAF1PwJSGlFKUaBVLc2gWR0CIOqXhwVCYdX2UKGgGaAloD0MIZvm6DP+BYECUhpRSlGgVTegDaBZHQIhF+aa1Cw91fZQoaAZoCWgPQwhbejTVk0VnQJSGlFKUaBVN6ANoFkdAiExbCJoCdXV9lChoBmgJaA9DCGo0uRgDQGRAlIaUUpRoFU3oA2gWR0CITyxXXAdodX2UKGgGaAloD0MIbAn5oOd8YkCUhpRSlGgVTegDaBZHQIhZGvMbFS91fZQoaAZoCWgPQwjQDyOER9RjQJSGlFKUaBVN6ANoFkdAiFupd8iOenV9lChoBmgJaA9DCGTrGcKxZ2FAlIaUUpRoFU3oA2gWR0CIYAz3RG+cdX2UKGgGaAloD0MIQIS4cvYFY0CUhpRSlGgVTegDaBZHQIhnAGKQ7tB1fZQoaAZoCWgPQwjq6/ma5SFjQJSGlFKUaBVN6ANoFkdAiLjTcZccEXV9lChoBmgJaA9DCE1qaAOw1WZAlIaUUpRoFU3oA2gWR0CI053MY/FBdX2UKGgGaAloD0MIwopTrQXDYkCUhpRSlGgVTegDaBZHQIjiN7SiM5x1fZQoaAZoCWgPQwgddAmH3g5kQJSGlFKUaBVN6ANoFkdAiOXlN+LFXXV9lChoBmgJaA9DCLoRFhXxamJAlIaUUpRoFU3oA2gWR0CI6cH2ys0YdX2UKGgGaAloD0MIvD5z1ictY0CUhpRSlGgVTegDaBZHQIjvGjKxLTR1fZQoaAZoCWgPQwgFxY8x99pkQJSGlFKUaBVN6ANoFkdAiPQM54nndXV9lChoBmgJaA9DCOny5nCtaGZAlIaUUpRoFU3oA2gWR0CI+3sAvL5idX2UKGgGaAloD0MI7uh/uRZSY0CUhpRSlGgVTegDaBZHQIj/jNW2gFp1fZQoaAZoCWgPQwgXR+Um6uxiQJSGlFKUaBVN6ANoFkdAiQrPE87p3XV9lChoBmgJaA9DCCdok8On7GNAlIaUUpRoFU3oA2gWR0CJERZVXFLndX2UKGgGaAloD0MIK6ORz6vVZECUhpRSlGgVTegDaBZHQIkTmJaaCtl1fZQoaAZoCWgPQwhTBDi9C6ZlQJSGlFKUaBVN6ANoFkdAiRpjgZTAFnV9lChoBmgJaA9DCH3KMVncE2dAlIaUUpRoFU3oA2gWR0CJHBj4pMHsdX2UKGgGaAloD0MIAP+UKlFpXECUhpRSlGgVTegDaBZHQIkfRWvKU3Z1fZQoaAZoCWgPQwhORSqMLQJoQJSGlFKUaBVN6ANoFkdAiSQcB2fTTnV9lChoBmgJaA9DCO6UDtb/sTFAlIaUUpRoFUvgaBZHQIkpX0Eovzx1fZQoaAZoCWgPQwhKfsSv2FhjQJSGlFKUaBVN6ANoFkdAiXO4G+sYEXV9lChoBmgJaA9DCBHfiVmvVmRAlIaUUpRoFU3oA2gWR0CJhnU5uIhydX2UKGgGaAloD0MIkWEVb2RkY0CUhpRSlGgVTegDaBZHQImQwvN/vv11fZQoaAZoCWgPQwhcWDfenehhQJSGlFKUaBVN6ANoFkdAiZNIEr5IpnV9lChoBmgJaA9DCIvFbwqrtGJAlIaUUpRoFU3oA2gWR0CJler6LwWndX2UKGgGaAloD0MIqUpbXGP0YkCUhpRSlGgVTegDaBZHQImZmJtSAH51fZQoaAZoCWgPQwgi/8wgPl1lQJSGlFKUaBVN6ANoFkdAiZ1hnjABUHV9lChoBmgJaA9DCPERMSUSumRAlIaUUpRoFU3oA2gWR0CJpOj1wo9cdX2UKGgGaAloD0MIdJmaBG88ZUCUhpRSlGgVTegDaBZHQImpCDZlFtt1fZQoaAZoCWgPQwhiTWVR2AthQJSGlFKUaBVN6ANoFkdAibUVEuxrz3V9lChoBmgJaA9DCDC45o7+cWVAlIaUUpRoFU3oA2gWR0CJvIruIAOsdX2UKGgGaAloD0MI3+ALkyluZ0CUhpRSlGgVTegDaBZHQInMEZ1mrbR1fZQoaAZoCWgPQwj6ff/mRVllQJSGlFKUaBVN6ANoFkdAic8MPrfLtHV9lChoBmgJaA9DCPLtXYM+EmRAlIaUUpRoFU3oA2gWR0CJ1FCxeLNwdX2UKGgGaAloD0MILQWk/Y9PaECUhpRSlGgVTegDaBZHQInb3qkdmxt1fZQoaAZoCWgPQwjZJ4BiZC5mQJSGlFKUaBVN6ANoFkdAieQij1wo9nV9lChoBmgJaA9DCECjdOlfWWVAlIaUUpRoFU3oA2gWR0CJ6labF0gbdX2UKGgGaAloD0MIW2H6XkM4ZkCUhpRSlGgVTegDaBZHQIpH3H/95yF1fZQoaAZoCWgPQwhszVZechFnQJSGlFKUaBVN6ANoFkdAileWzF+/g3V9lChoBmgJaA9DCP4qwHebqmRAlIaUUpRoFU3oA2gWR0CKW5wn6VMVdX2UKGgGaAloD0MIMQvtnOaHYkCUhpRSlGgVTegDaBZHQIpf170Fr2x1fZQoaAZoCWgPQwgxQ+OJIGRmQJSGlFKUaBVN6ANoFkdAimTYWk8A73V9lChoBmgJaA9DCGJlNPL5gWFAlIaUUpRoFU3oA2gWR0CKaTnied08dX2UKGgGaAloD0MIL8IU5dKLYkCUhpRSlGgVTegDaBZHQIpxRz5oGpx1fZQoaAZoCWgPQwjVlGQdjvRHQJSGlFKUaBVLs2gWR0CKc1xiG34LdX2UKGgGaAloD0MIvMywUVY6YkCUhpRSlGgVTegDaBZHQIp1YFaB7NV1fZQoaAZoCWgPQwjYfjLGB2dkQJSGlFKUaBVN6ANoFkdAioEWpyZKF3V9lChoBmgJaA9DCEHYKVaNi2FAlIaUUpRoFU3oA2gWR0CKh5qptJnQdX2UKGgGaAloD0MIqKym64lnZ0CUhpRSlGgVTegDaBZHQIqSBArxy4p1fZQoaAZoCWgPQwgbYye8hHhgQJSGlFKUaBVN6ANoFkdAipQDnNgSe3V9lChoBmgJaA9DCKkz95DwSWZAlIaUUpRoFU3oA2gWR0CKl1ta6jFidX2UKGgGaAloD0MIelORCmMgYkCUhpRSlGgVTegDaBZHQIqcLsIE8q51fZQoaAZoCWgPQwhvgQTFj/VNQJSGlFKUaBVL4mgWR0CKnwKdhAnldX2UKGgGaAloD0MIR6ta0lHLZECUhpRSlGgVTegDaBZHQIqhRJbt7a91fZQoaAZoCWgPQwhblq/LcDhgQJSGlFKUaBVN6ANoFkdAiqb7iQ1aXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 228, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (222 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.4487300431895, "std_reward": 24.576212998248916, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T02:31:35.078724"}