Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,190 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
base_model:
|
9 |
+
- Qwen/Qwen3-14B
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
library_name: transformers
|
12 |
+
tags:
|
13 |
+
- blockchain
|
14 |
+
- conversational
|
15 |
+
- web3
|
16 |
+
- qwen3
|
17 |
+
eval_results:
|
18 |
+
- task: domain-specific evaluation
|
19 |
+
dataset: DMindAI/DMind_Benchmark
|
20 |
+
metric: normalized web3 score
|
21 |
+
score: 74.12
|
22 |
+
model: DMind-1-mini
|
23 |
+
model_rank: 2 / 24
|
24 |
+
---
|
25 |
+
|
26 |
+
<p align="center">
|
27 |
+
<img src="figures/dmind-ai-logo.png" width="300" alt="DMind Logo" />
|
28 |
+
</p>
|
29 |
+
<hr>
|
30 |
+
<div align="center" style="line-height: 1;">
|
31 |
+
<a href="https://dmind.ai/" target="_blank" style="margin: 2px;">
|
32 |
+
<img alt="DMind Website" src="https://img.shields.io/badge/DMind-Homepage-blue?logo=data:image/svg+xml;base64,)" style="display: inline-block; vertical-align: middle;"/>
|
33 |
+
</a>
|
34 |
+
<a href="https://huggingface.co/datasets/DMindAI/DMind-1-mini" target="_blank" style="margin: 2px;">
|
35 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/HuggingFace-DMind-ffd21f?color=ffd21f&logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
|
36 |
+
</a>
|
37 |
+
<a href="https://x.com/dmind_ai" target="_blank" style="margin: 2px;">
|
38 |
+
<img alt="X" src="https://img.shields.io/badge/X-@dmind-1DA1F2?logo=x" style="display: inline-block; vertical-align: middle;"/>
|
39 |
+
</a>
|
40 |
+
<a href="https://openrouter.ai/chat" target="_blank" style="margin: 2px;">
|
41 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DMind--1--mini-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
42 |
+
</a>
|
43 |
+
<a href="https://discord.gg/xxwmPHU3" target="_blank" style="margin: 2px;">
|
44 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DMind-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
45 |
+
</a>
|
46 |
+
<a href="https://opensource.org/licenses/MIT" target="_blank" style="margin: 2px;">
|
47 |
+
<img alt="Code License: MIT" src="https://img.shields.io/badge/Code%20License-MIT-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
|
48 |
+
</a>
|
49 |
+
</div>
|
50 |
+
|
51 |
+
|
52 |
+
## Table of Contents
|
53 |
+
- [Introduction](#introduction)
|
54 |
+
- [1. Model Overview](#1-model-overview)
|
55 |
+
- [2. Evaluation Results](#2-evaluation-results)
|
56 |
+
- [3. Use Cases](#3-use-cases)
|
57 |
+
- [4. Quickstart](#4-quickstart)
|
58 |
+
- [4.1 Model Downloads](#41-model-downloads)
|
59 |
+
- [4.2 OpenRouter API](#42-openrouter-api)
|
60 |
+
- [4.3 OpenRouter Web Chat](#43-openrouter-web-chat)
|
61 |
+
- [License](#license)
|
62 |
+
- [Contact](#contact)
|
63 |
+
|
64 |
+
## Introduction
|
65 |
+
|
66 |
+
We introduce **DMind-1**, a domain-specialized LLM fine-tuned for the Web3 ecosystem via supervised instruction tuning and reinforcement learning from human feedback (RLHF).
|
67 |
+
|
68 |
+
To support real-time and resource-constrained applications, we further introduce **DMind-1-mini**, a compact variant distilled from both DMind-1 and a generalist LLM using a multi-level distillation framework. It retains key domain reasoning abilities while operating with significantly lower computational overhead.
|
69 |
+
|
70 |
+
**DMind-1** and **DMind-1-mini** represent a robust foundation for intelligent agents in the Web3 ecosystem.
|
71 |
+
|
72 |
+
## 1. Model Overview
|
73 |
+
|
74 |
+
### DMind-1-mini
|
75 |
+
|
76 |
+
To address scenarios requiring lower latency and faster inference, we introduce **DMind-1-mini**, a lightweight distilled version of DMind-1 based on Qwen3-14B. DMind-1-mini is trained using knowledge distillation and our custom **DeepResearch** framework, drawing from two teacher models:
|
77 |
+
- **DMind-1** (Qwen3-32B): Our specialized Web3 domain model
|
78 |
+
- **GPT-o3 + DeepResearch**: A general-purpose SOTA LLM, with its outputs processed through our DeepResearch framework for Web3 domain alignment
|
79 |
+
|
80 |
+
The **Distillation pipeline** combines:
|
81 |
+
|
82 |
+
- **Web3-specific data distillation**: High-quality instruction-following and QA examples generated by the teacher models
|
83 |
+
|
84 |
+
- **Distribution-level supervision**: The student model learns to approximate the teachers' output distributions through soft-label guidance, preserving nuanced prediction behavior and confidence calibration
|
85 |
+
|
86 |
+
- **Intermediate representation transfer**: Knowledge is transferred by aligning intermediate representations between teacher and student models, promoting deeper structural understanding beyond surface-level mimicry
|
87 |
+
|
88 |
+
This multi-level distillation strategy enables DMind-1-mini to maintain high Web3 task performance while significantly reducing computational overhead and latency, making it suitable for real-time applications such as instant Q&A, on-chain analytics, and lightweight agent deployment.
|
89 |
+
|
90 |
+
|
91 |
+
## 2. Evaluation Results
|
92 |
+
|
93 |
+

|
94 |
+
|
95 |
+
We evaluate **DMind-1** and **DMind-1-mini** using the DMind Benchmark, a domain-specific evaluation suite tailored to assess large language models in the Web3 context. The benchmark spans 1,917 expert-reviewed questions across nine critical categories—including Blockchain Fundamentals, Infrastructure, Smart Contracts, DeFi, DAO, NFT, Token Economics, Meme, and Security. It combines multiple-choice and subjective open-ended tasks, simulating real-world challenges and requiring deep contextual understanding, which provides a comprehensive assessment of both factual knowledge and advanced reasoning.
|
96 |
+
Under this rigorous evaluation:
|
97 |
+
- DMind-1 ranked 1st among 24 leading models, outperforming both proprietary (e.g., Grok-3) and open-source (e.g., DeepSeek-R1) LLMs, with a normalized Web3 score of 77.44
|
98 |
+
- DMind-1-mini also performed strongly, ranking 2nd overall with a normalized Web3 score of 74.12. This demonstrates the effectiveness of our compact distillation pipeline
|
99 |
+
|
100 |
+
|
101 |
+
## 3. Use Cases
|
102 |
+
- **Expert-Level Question & Answering**: Provides accurate, context-aware answers on blockchain, DeFi, smart contracts, and related Web3 topics
|
103 |
+
- **Compliance-Aware Support**: Assists in drafting or reviewing content within regulatory and legal contexts
|
104 |
+
- **Content Generation in Domain**: Produces Web3-specific blog posts, documentation, and tutorials tailored to developers and users
|
105 |
+
- **DeFi Strategy Suggestions**: Generates insights and recommendations for yield farming, liquidity provision, and portfolio strategies based on user-provided data
|
106 |
+
- **Risk Management**: Suggests strategies aligned with user risk profiles for more informed decision-making in volatile markets
|
107 |
+
|
108 |
+
## 4. Quickstart
|
109 |
+
|
110 |
+
### 4.1 Model Downloads
|
111 |
+
|
112 |
+
| **Model** | **Base Model** | **Download** |
|
113 |
+
|:--------------:|:--------------:|:----------------------------------------------------------------------------:|
|
114 |
+
| DMind-1-mini | Qwen3-14B | [Hugging Face Link](https://huggingface.co/dmind-ai/dmind-1-mini) |
|
115 |
+
|
116 |
+
|
117 |
+
### 4.2 OpenRouter API
|
118 |
+
|
119 |
+
You can access **DMind-1-mini** via the OpenRouter API. Simply specify the desired model in the `model` field of your request payload.
|
120 |
+
|
121 |
+
**API Endpoint:**
|
122 |
+
```
|
123 |
+
https://openrouter.ai/api/v1/chat/completions
|
124 |
+
```
|
125 |
+
|
126 |
+
**Authentication:**
|
127 |
+
- Obtain your API key from [OpenRouter](https://openrouter.ai/)
|
128 |
+
- Include it in the `Authorization` header as `Bearer YOUR_API_KEY`
|
129 |
+
|
130 |
+
**Model Identifiers:**
|
131 |
+
- `DMind-1-mini` — Full-size expert model
|
132 |
+
|
133 |
+
**Example Request (Python):**
|
134 |
+
```python
|
135 |
+
import requests
|
136 |
+
|
137 |
+
headers = {
|
138 |
+
"Authorization": "Bearer YOUR_API_KEY",
|
139 |
+
"Content-Type": "application/json"
|
140 |
+
}
|
141 |
+
|
142 |
+
data = {
|
143 |
+
"model": "DMind-1-mini",
|
144 |
+
"messages": [
|
145 |
+
{"role": "user", "content": "Explain DeFi in simple terms."}
|
146 |
+
]
|
147 |
+
}
|
148 |
+
|
149 |
+
response = requests.post(
|
150 |
+
"https://openrouter.ai/api/v1/chat/completions",
|
151 |
+
headers=headers,
|
152 |
+
json=data
|
153 |
+
)
|
154 |
+
print(response.json())
|
155 |
+
```
|
156 |
+
|
157 |
+
**Example Request (cURL):**
|
158 |
+
```bash
|
159 |
+
curl https://openrouter.ai/api/v1/chat/completions \
|
160 |
+
-H "Authorization: Bearer YOUR_API_KEY" \
|
161 |
+
-H "Content-Type: application/json" \
|
162 |
+
-d '{
|
163 |
+
"model": "DMind-1-mini",
|
164 |
+
"messages": [{"role": "user", "content": "What is a smart contract?"}]
|
165 |
+
}'
|
166 |
+
```
|
167 |
+
|
168 |
+
**Notes:**
|
169 |
+
- Replace `YOUR_API_KEY` with your actual OpenRouter API key.
|
170 |
+
- Change the `model` field to `DMind-1-mini` as needed.
|
171 |
+
- Both models support the same API structure for easy integration.
|
172 |
+
|
173 |
+
### 4.3 OpenRouter Web Chat
|
174 |
+
|
175 |
+
You can try **DMind-1-mini** instantly using the [OpenRouter Web Chat](https://openrouter.ai/chat).
|
176 |
+
|
177 |
+
- Select your desired model from the dropdown menu (**DMind-1-mini**).
|
178 |
+
- Enter your prompt and interact with the model in real time.
|
179 |
+
|
180 |
+
[](https://openrouter.ai/chat)
|
181 |
+
|
182 |
+
## License
|
183 |
+
- The code repository and model weights for DMind-1-mini is released under the MIT License.
|
184 |
+
- Commercial use, modification, and derivative works (including distillation and fine-tuning) are permitted.
|
185 |
+
- **Base Models:**
|
186 |
+
- DMind-1-mini is derived from Qwen3-14B, originally licensed under the [Qwen License](https://github.com/QwenLM/Qwen3).
|
187 |
+
- Please ensure compliance with the original base model licenses when using or distributing derivatives.
|
188 |
+
|
189 |
+
## Contact
|
190 |
+
For questions or support, please contact [email protected]
|