DMind-1 / handler.py
yuzhe's picture
Update handler.py
a55dc79 verified
raw
history blame
2.09 kB
# handler.py —— 放在模型仓库根目录
from typing import Dict, Any
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
class EndpointHandler:
"""
Hugging Face Inference Endpoints 约定的自定义入口:
• __init__(model_dir, **kwargs) —— 加载模型
• __call__(inputs: Dict) -> Dict —— 处理一次请求
"""
def __init__(self, model_dir: str, **kwargs):
# 1️⃣ Tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True
)
# 2️⃣ 构建“空壳”模型(不占显存)
with init_empty_weights():
base_model = AutoModelForCausalLM.from_pretrained(
model_dir,
torch_dtype=torch.float16,
trust_remote_code=True,
)
# 3️⃣ 把权重切片加载到两张 GPU
self.model = load_checkpoint_and_dispatch(
base_model,
checkpoint=model_dir,
device_map="auto", # 自动分层到 cuda:0 / cuda:1
dtype=torch.float16,
)
# 4️⃣ 生成时常用的生成参数
self.generation_kwargs = dict(
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
data 格式:
{
"inputs": "your prompt here"
}
"""
prompt = data["inputs"]
# ➡️ 只把输入张量放到 cuda:0(与模型第一层同卡)
inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda:0")
# 生成
with torch.inference_mode():
output_ids = self.model.generate(**inputs, **self.generation_kwargs)
generated_text = self.tokenizer.decode(
output_ids[0], skip_special_tokens=True
)
return {"generated_text": generated_text}