PenguinMan commited on
Commit
7ff93e5
·
1 Parent(s): 31364bf

Upload PPO LunarLander-v2 trained agent

Browse files
LOL.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64b498fc323abd5cdca33315e8803e02cb82b72d09ea596c26863a5c5aa2d97b
3
+ size 147379
LOL/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
LOL/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83f98a1700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83f98a1790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83f98a1820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83f98a18b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f83f98a1940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f83f98a19d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83f98a1a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83f98a1af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f83f98a1b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83f98a1c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83f98a1ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83f98a1d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f83f98a4780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682157320574853673,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZ96L0tj5A/u42Vvhx3xr4VJCq+6L12vQAAAAAAAAAA84O5vcOhTrouura6HPu3tV73hDoTitc5AACAPwAAAADmQ8q9e+KcuuGVlrrPDJG1hmJLOgeurTkAAIA/AACAPwZImj5+JEQ/9hnUPSycxr5L8EE+X65KvgAAAAAAAAAAWm4zvntnjbyqv029YHjbu8vpDz6iz648AACAPwAAgD+6sUm+AeOcvMFvKztwe4I5SkUKPo7hW7oAAIA/AACAPx44pr6OON8+CidGPvmHsb6WBYy9qw7/vAAAAAAAAAAAva9TvlQ7xbxLS3C7Ck/XubN9MD7G0686AACAPwAAgD/N67K9rkOOuvArF7s6vhW31VDpuvPZNjoAAIA/AAAAAFogtT3JBRU+615tvc7dV75Zgg29Op77OwAAAAAAAAAAE8QOPtvJUz+Ot729VvKIvnEuKz2DqmC9AAAAAAAAAABmCma8e56bujrLKTggEyMzR3PkOr0oRLcAAIA/AACAP/iWs77jO1s/RAAwvkuwrb74Y4G+w8e1PQAAAAAAAAAAM8tru8OBSrpbUB05bwePtXJxgLmuMTm4AACAPwAAgD/aTpu94YCXusKql7vu0YU47xijOplVgTkAAIA/AAAAAGBvWL5UkJS849kHu8sHMrm23gk+gpcSOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfshbrn4xY0CUhpRSlIwBbJRN6AOMAXSUR0CT9RN/vv0AdX2UKGgGaAloD0MI5IV0eIhFcUCUhpRSlGgVTU4DaBZHQJP3aNWEK3N1fZQoaAZoCWgPQwgNjLysiaxgQJSGlFKUaBVN6ANoFkdAk/kwmZ3LWHV9lChoBmgJaA9DCFUUr7K2sF9AlIaUUpRoFU3oA2gWR0CT/X/n4fwJdX2UKGgGaAloD0MIsmSO5V11YUCUhpRSlGgVTegDaBZHQJQErWJ79ht1fZQoaAZoCWgPQwhVNNb+ToBiQJSGlFKUaBVN6ANoFkdAlAdx8lXzUnV9lChoBmgJaA9DCFD/WfNjg2VAlIaUUpRoFU3oA2gWR0CUCHhFmWdFdX2UKGgGaAloD0MISKgZUsXGYkCUhpRSlGgVTegDaBZHQJQJ5T3qRlp1fZQoaAZoCWgPQwj68ZcWdd5gQJSGlFKUaBVN6ANoFkdAlAvcYuTRpnV9lChoBmgJaA9DCM/XLJeNrj1AlIaUUpRoFUvmaBZHQJQL+KUFB6d1fZQoaAZoCWgPQwjkZU0s8KBsQJSGlFKUaBVNsAFoFkdAlAwUX531SXV9lChoBmgJaA9DCGWlSSmoFHFAlIaUUpRoFU0PA2gWR0CUEFllbu+idX2UKGgGaAloD0MISIjyBS16QUCUhpRSlGgVS+FoFkdAlBPc5Ke05XV9lChoBmgJaA9DCAg8MIBw42NAlIaUUpRoFU3oA2gWR0CUJY7bcoH+dX2UKGgGaAloD0MInl2+9WGpYkCUhpRSlGgVTegDaBZHQJQ+VNnGsFN1fZQoaAZoCWgPQwhp/MIryVJmQJSGlFKUaBVN6ANoFkdAlD9nRw6ySnV9lChoBmgJaA9DCKvoD828AWdAlIaUUpRoFU3oA2gWR0CUQSuPFNtZdX2UKGgGaAloD0MIZLDiVOt/a0CUhpRSlGgVTS4CaBZHQJRBmp6yB091fZQoaAZoCWgPQwjaWIl5VuNjQJSGlFKUaBVN6ANoFkdAlEXRj4Hoo3V9lChoBmgJaA9DCKMiTifZ+mJAlIaUUpRoFU3oA2gWR0CUSMq20AtGdX2UKGgGaAloD0MI+Q/pty+zYUCUhpRSlGgVTegDaBZHQJRK/ySV4X51fZQoaAZoCWgPQwg9tfrqKpZjQJSGlFKUaBVN6ANoFkdAlEyjtoi9qXV9lChoBmgJaA9DCKBQTx+BfUtAlIaUUpRoFUv/aBZHQJROIdPtUn51fZQoaAZoCWgPQwjLvcCsEGNxQJSGlFKUaBVL/2gWR0CUUCVYISlFdX2UKGgGaAloD0MIv2A3bFsARECUhpRSlGgVS8JoFkdAlFZX6ZYxL3V9lChoBmgJaA9DCPCLS1XatV9AlIaUUpRoFU3oA2gWR0CUWGOJ+DvmdX2UKGgGaAloD0MIYaku4GWybkCUhpRSlGgVTeoCaBZHQJRZbLLZBcB1fZQoaAZoCWgPQwipUN1cfIRjQJSGlFKUaBVN6ANoFkdAlF8ghr30w3V9lChoBmgJaA9DCHu7JTlgGWdAlIaUUpRoFU3oA2gWR0CUYgYQarFPdX2UKGgGaAloD0MIm42VmOfOYECUhpRSlGgVTegDaBZHQJRiMeEIw/R1fZQoaAZoCWgPQwiRRZp4B1NmQJSGlFKUaBVN6ANoFkdAlGJY42jwhHV9lChoBmgJaA9DCF34wfnU3G9AlIaUUpRoFU1/AWgWR0CUZ/i22G7BdX2UKGgGaAloD0MIxk54CU6kX0CUhpRSlGgVTegDaBZHQJRonTYukDZ1fZQoaAZoCWgPQwjZlZaRupBwQJSGlFKUaBVNWQFoFkdAlGmnZXdTHnV9lChoBmgJaA9DCDylg/W/YHFAlIaUUpRoFU2ZAmgWR0CUaqBHCoCNdX2UKGgGaAloD0MI4/+OqFCPTECUhpRSlGgVS+hoFkdAlHdEdBBzFXV9lChoBmgJaA9DCH78pUW9JnBAlIaUUpRoFU0fAWgWR0CUeU4keIVNdX2UKGgGaAloD0MIAyZw6264YkCUhpRSlGgVTegDaBZHQJR6mPCEYfp1fZQoaAZoCWgPQwimY84z9uJvQJSGlFKUaBVNbgFoFkdAlJIbfcer/HV9lChoBmgJaA9DCLe1heelk2ZAlIaUUpRoFU3oA2gWR0CUku/pMYdidX2UKGgGaAloD0MIKxTpfs6TcUCUhpRSlGgVTSECaBZHQJST98CxNZh1fZQoaAZoCWgPQwg02xX6YLNEQJSGlFKUaBVL0WgWR0CUlj2Bas6rdX2UKGgGaAloD0MIdv9YiA4KZUCUhpRSlGgVTegDaBZHQJSYmvZAY511fZQoaAZoCWgPQwhrtvKS/9VeQJSGlFKUaBVN6ANoFkdAlJzEBsANonV9lChoBmgJaA9DCFRSJ6CJ4G5AlIaUUpRoFU2MAmgWR0CUnuvuw5eadX2UKGgGaAloD0MIX5oiwGmBb0CUhpRSlGgVTQsDaBZHQJSgAY2sJY11fZQoaAZoCWgPQwiloNtLGhRuQJSGlFKUaBVNTgJoFkdAlKDBomG/OHV9lChoBmgJaA9DCIdtizKbdmNAlIaUUpRoFU3oA2gWR0CUo+p5/smfdX2UKGgGaAloD0MIUUtzK4S5ZECUhpRSlGgVTegDaBZHQJStOKoAGSp1fZQoaAZoCWgPQwg7Un3nF1VvQJSGlFKUaBVN3AFoFkdAlK1Y1cdHUnV9lChoBmgJaA9DCG7BUl3AyF9AlIaUUpRoFU3oA2gWR0CUr4Pbfxc3dX2UKGgGaAloD0MIOzlDcUfNcECUhpRSlGgVTZsBaBZHQJSv2SSvC/J1fZQoaAZoCWgPQwijeQCL/PY+QJSGlFKUaBVL9GgWR0CUsKCZ4Oc2dX2UKGgGaAloD0MIcZF7ujqLcECUhpRSlGgVTXUCaBZHQJS0jRVp9JB1fZQoaAZoCWgPQwh6bTZW4iNjQJSGlFKUaBVN6ANoFkdAlLT176YVqXV9lChoBmgJaA9DCKTeUznt6WBAlIaUUpRoFU3oA2gWR0CUtRJiiItUdX2UKGgGaAloD0MImdnnMYoEckCUhpRSlGgVTe4BaBZHQJS1H3j+7191fZQoaAZoCWgPQwiIDoEjAapxQJSGlFKUaBVNxAJoFkdAlL5kHMUypXV9lChoBmgJaA9DCIeJBil4LXBAlIaUUpRoFU1jAWgWR0CUyhlHSWqtdX2UKGgGaAloD0MITioaaz/LcECUhpRSlGgVTWcBaBZHQJTKKJrLyMF1fZQoaAZoCWgPQwjX3xKAf2dvQJSGlFKUaBVNCwJoFkdAlMuhi5NGmXV9lChoBmgJaA9DCKfOo+I/IHFAlIaUUpRoFU0LAmgWR0CUzgdLQHAzdX2UKGgGaAloD0MIGjbK+s0wbkCUhpRSlGgVTQkCaBZHQJTPH9ZRsM11fZQoaAZoCWgPQwiet7HZkY9wQJSGlFKUaBVNHQJoFkdAlM9jm4iHI3V9lChoBmgJaA9DCAagUbp0C2FAlIaUUpRoFU3oA2gWR0CU6uF85S3tdX2UKGgGaAloD0MIl/+Qfvs0aECUhpRSlGgVTegDaBZHQJTscZuQ6p51fZQoaAZoCWgPQwhyp3Sw/n9BQJSGlFKUaBVLyGgWR0CU7yj1wo9cdX2UKGgGaAloD0MIqWdBKG+UZECUhpRSlGgVTegDaBZHQJTvVo24usd1fZQoaAZoCWgPQwjQs1n1+epwQJSGlFKUaBVNGwFoFkdAlPBClabF0nV9lChoBmgJaA9DCAYRqWmX9GxAlIaUUpRoFU0hAWgWR0CU8JnvDxb0dX2UKGgGaAloD0MIHeVgNgETZECUhpRSlGgVTegDaBZHQJTwsyRB/qh1fZQoaAZoCWgPQwjAdcWM8KVkQJSGlFKUaBVN6ANoFkdAlPFZBC2MKnV9lChoBmgJaA9DCKM6Hcj6JnBAlIaUUpRoFU0AAmgWR0CU8vUT+NtJdX2UKGgGaAloD0MIq7TFNT7qYECUhpRSlGgVTegDaBZHQJTzz5mAbyZ1fZQoaAZoCWgPQwjw4CcOoG1wQJSGlFKUaBVN8AJoFkdAlPTbY5DJEHV9lChoBmgJaA9DCIBHVKguYHBAlIaUUpRoFU2YA2gWR0CU9j2kzoECdX2UKGgGaAloD0MICB9KtCTxcECUhpRSlGgVTU4BaBZHQJT2SFWXC0p1fZQoaAZoCWgPQwi37uapDjdCQJSGlFKUaBVL1WgWR0CU9nS4vvjPdX2UKGgGaAloD0MI6bmFrkTcMUCUhpRSlGgVS8loFkdAlPfmKl54W3V9lChoBmgJaA9DCONxUS0iPEpAlIaUUpRoFUu4aBZHQJT376j32251fZQoaAZoCWgPQwh9lBEXANhtQJSGlFKUaBVNWQFoFkdAlPpc0Ltu1nV9lChoBmgJaA9DCDyFXKnnfG5AlIaUUpRoFU0CAmgWR0CU+s003wTedX2UKGgGaAloD0MINnhflYtVbkCUhpRSlGgVTfgBaBZHQJT83vv0AcV1fZQoaAZoCWgPQwjnj2ltGkRfQJSGlFKUaBVN6ANoFkdAlP/Nx2jfvXV9lChoBmgJaA9DCAPrOH4ou2xAlIaUUpRoFU1vAWgWR0CVAHvNNahYdX2UKGgGaAloD0MIPPn02Ja5b0CUhpRSlGgVTZ8BaBZHQJUBevTw2EV1fZQoaAZoCWgPQwgPYmcK3ZFwQJSGlFKUaBVNPQFoFkdAlQGH9BKL9HV9lChoBmgJaA9DCAN4CySoOnFAlIaUUpRoFU2aAWgWR0CVAq/hVENOdX2UKGgGaAloD0MIXK0Tl6MNckCUhpRSlGgVTTIBaBZHQJUEEMpgCwN1fZQoaAZoCWgPQwi3KR4XVYZwQJSGlFKUaBVNTAFoFkdAlQd+SGJvYXV9lChoBmgJaA9DCLJLVG/NLXFAlIaUUpRoFU3wAWgWR0CVB7JJ5E+gdX2UKGgGaAloD0MId0oH6/88cECUhpRSlGgVTbEBaBZHQJUInd8Aq/d1fZQoaAZoCWgPQwg7U+i8BuhwQJSGlFKUaBVNQwFoFkdAlQqRFNL13HV9lChoBmgJaA9DCEURUrczQG5AlIaUUpRoFU0eAWgWR0CVCwz/IbOvdX2UKGgGaAloD0MILubnhqbbbECUhpRSlGgVTTsBaBZHQJURqqEOAiF1fZQoaAZoCWgPQwi/fLJiOFlxQJSGlFKUaBVNjQJoFkdAlRNMCYCyQnV9lChoBmgJaA9DCMTt0LCYk3BAlIaUUpRoFUv6aBZHQJUXnTc6/7B1fZQoaAZoCWgPQwgzqaENgIdwQJSGlFKUaBVNHwFoFkdAlRoeO801qHV9lChoBmgJaA9DCOWaApkdK25AlIaUUpRoFU0uAmgWR0CVGiJFspG4dX2UKGgGaAloD0MIXi7iO7FLcUCUhpRSlGgVTbkBaBZHQJUcb7yhBZ91ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 248,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
LOL/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71052ab1d7c9485e1ee7dc46675536641e08447ac13fc05151c33fb1030b10c0
3
+ size 87929
LOL/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dcfd5582505eb9518b5b807366b48bebd282bfb6748f18becb654c451779e2b
3
+ size 43329
LOL/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LOL/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 229.37 +/- 67.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83f98a1700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83f98a1790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83f98a1820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83f98a18b0>", "_build": "<function ActorCriticPolicy._build at 0x7f83f98a1940>", "forward": "<function ActorCriticPolicy.forward at 0x7f83f98a19d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83f98a1a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83f98a1af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83f98a1b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83f98a1c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83f98a1ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83f98a1d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f83f98a4780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682157320574853673, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZ96L0tj5A/u42Vvhx3xr4VJCq+6L12vQAAAAAAAAAA84O5vcOhTrouura6HPu3tV73hDoTitc5AACAPwAAAADmQ8q9e+KcuuGVlrrPDJG1hmJLOgeurTkAAIA/AACAPwZImj5+JEQ/9hnUPSycxr5L8EE+X65KvgAAAAAAAAAAWm4zvntnjbyqv029YHjbu8vpDz6iz648AACAPwAAgD+6sUm+AeOcvMFvKztwe4I5SkUKPo7hW7oAAIA/AACAPx44pr6OON8+CidGPvmHsb6WBYy9qw7/vAAAAAAAAAAAva9TvlQ7xbxLS3C7Ck/XubN9MD7G0686AACAPwAAgD/N67K9rkOOuvArF7s6vhW31VDpuvPZNjoAAIA/AAAAAFogtT3JBRU+615tvc7dV75Zgg29Op77OwAAAAAAAAAAE8QOPtvJUz+Ot729VvKIvnEuKz2DqmC9AAAAAAAAAABmCma8e56bujrLKTggEyMzR3PkOr0oRLcAAIA/AACAP/iWs77jO1s/RAAwvkuwrb74Y4G+w8e1PQAAAAAAAAAAM8tru8OBSrpbUB05bwePtXJxgLmuMTm4AACAPwAAgD/aTpu94YCXusKql7vu0YU47xijOplVgTkAAIA/AAAAAGBvWL5UkJS849kHu8sHMrm23gk+gpcSOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfshbrn4xY0CUhpRSlIwBbJRN6AOMAXSUR0CT9RN/vv0AdX2UKGgGaAloD0MI5IV0eIhFcUCUhpRSlGgVTU4DaBZHQJP3aNWEK3N1fZQoaAZoCWgPQwgNjLysiaxgQJSGlFKUaBVN6ANoFkdAk/kwmZ3LWHV9lChoBmgJaA9DCFUUr7K2sF9AlIaUUpRoFU3oA2gWR0CT/X/n4fwJdX2UKGgGaAloD0MIsmSO5V11YUCUhpRSlGgVTegDaBZHQJQErWJ79ht1fZQoaAZoCWgPQwhVNNb+ToBiQJSGlFKUaBVN6ANoFkdAlAdx8lXzUnV9lChoBmgJaA9DCFD/WfNjg2VAlIaUUpRoFU3oA2gWR0CUCHhFmWdFdX2UKGgGaAloD0MISKgZUsXGYkCUhpRSlGgVTegDaBZHQJQJ5T3qRlp1fZQoaAZoCWgPQwj68ZcWdd5gQJSGlFKUaBVN6ANoFkdAlAvcYuTRpnV9lChoBmgJaA9DCM/XLJeNrj1AlIaUUpRoFUvmaBZHQJQL+KUFB6d1fZQoaAZoCWgPQwjkZU0s8KBsQJSGlFKUaBVNsAFoFkdAlAwUX531SXV9lChoBmgJaA9DCGWlSSmoFHFAlIaUUpRoFU0PA2gWR0CUEFllbu+idX2UKGgGaAloD0MISIjyBS16QUCUhpRSlGgVS+FoFkdAlBPc5Ke05XV9lChoBmgJaA9DCAg8MIBw42NAlIaUUpRoFU3oA2gWR0CUJY7bcoH+dX2UKGgGaAloD0MInl2+9WGpYkCUhpRSlGgVTegDaBZHQJQ+VNnGsFN1fZQoaAZoCWgPQwhp/MIryVJmQJSGlFKUaBVN6ANoFkdAlD9nRw6ySnV9lChoBmgJaA9DCKvoD828AWdAlIaUUpRoFU3oA2gWR0CUQSuPFNtZdX2UKGgGaAloD0MIZLDiVOt/a0CUhpRSlGgVTS4CaBZHQJRBmp6yB091fZQoaAZoCWgPQwjaWIl5VuNjQJSGlFKUaBVN6ANoFkdAlEXRj4Hoo3V9lChoBmgJaA9DCKMiTifZ+mJAlIaUUpRoFU3oA2gWR0CUSMq20AtGdX2UKGgGaAloD0MI+Q/pty+zYUCUhpRSlGgVTegDaBZHQJRK/ySV4X51fZQoaAZoCWgPQwg9tfrqKpZjQJSGlFKUaBVN6ANoFkdAlEyjtoi9qXV9lChoBmgJaA9DCKBQTx+BfUtAlIaUUpRoFUv/aBZHQJROIdPtUn51fZQoaAZoCWgPQwjLvcCsEGNxQJSGlFKUaBVL/2gWR0CUUCVYISlFdX2UKGgGaAloD0MIv2A3bFsARECUhpRSlGgVS8JoFkdAlFZX6ZYxL3V9lChoBmgJaA9DCPCLS1XatV9AlIaUUpRoFU3oA2gWR0CUWGOJ+DvmdX2UKGgGaAloD0MIYaku4GWybkCUhpRSlGgVTeoCaBZHQJRZbLLZBcB1fZQoaAZoCWgPQwipUN1cfIRjQJSGlFKUaBVN6ANoFkdAlF8ghr30w3V9lChoBmgJaA9DCHu7JTlgGWdAlIaUUpRoFU3oA2gWR0CUYgYQarFPdX2UKGgGaAloD0MIm42VmOfOYECUhpRSlGgVTegDaBZHQJRiMeEIw/R1fZQoaAZoCWgPQwiRRZp4B1NmQJSGlFKUaBVN6ANoFkdAlGJY42jwhHV9lChoBmgJaA9DCF34wfnU3G9AlIaUUpRoFU1/AWgWR0CUZ/i22G7BdX2UKGgGaAloD0MIxk54CU6kX0CUhpRSlGgVTegDaBZHQJRonTYukDZ1fZQoaAZoCWgPQwjZlZaRupBwQJSGlFKUaBVNWQFoFkdAlGmnZXdTHnV9lChoBmgJaA9DCDylg/W/YHFAlIaUUpRoFU2ZAmgWR0CUaqBHCoCNdX2UKGgGaAloD0MI4/+OqFCPTECUhpRSlGgVS+hoFkdAlHdEdBBzFXV9lChoBmgJaA9DCH78pUW9JnBAlIaUUpRoFU0fAWgWR0CUeU4keIVNdX2UKGgGaAloD0MIAyZw6264YkCUhpRSlGgVTegDaBZHQJR6mPCEYfp1fZQoaAZoCWgPQwimY84z9uJvQJSGlFKUaBVNbgFoFkdAlJIbfcer/HV9lChoBmgJaA9DCLe1heelk2ZAlIaUUpRoFU3oA2gWR0CUku/pMYdidX2UKGgGaAloD0MIKxTpfs6TcUCUhpRSlGgVTSECaBZHQJST98CxNZh1fZQoaAZoCWgPQwg02xX6YLNEQJSGlFKUaBVL0WgWR0CUlj2Bas6rdX2UKGgGaAloD0MIdv9YiA4KZUCUhpRSlGgVTegDaBZHQJSYmvZAY511fZQoaAZoCWgPQwhrtvKS/9VeQJSGlFKUaBVN6ANoFkdAlJzEBsANonV9lChoBmgJaA9DCFRSJ6CJ4G5AlIaUUpRoFU2MAmgWR0CUnuvuw5eadX2UKGgGaAloD0MIX5oiwGmBb0CUhpRSlGgVTQsDaBZHQJSgAY2sJY11fZQoaAZoCWgPQwiloNtLGhRuQJSGlFKUaBVNTgJoFkdAlKDBomG/OHV9lChoBmgJaA9DCIdtizKbdmNAlIaUUpRoFU3oA2gWR0CUo+p5/smfdX2UKGgGaAloD0MIUUtzK4S5ZECUhpRSlGgVTegDaBZHQJStOKoAGSp1fZQoaAZoCWgPQwg7Un3nF1VvQJSGlFKUaBVN3AFoFkdAlK1Y1cdHUnV9lChoBmgJaA9DCG7BUl3AyF9AlIaUUpRoFU3oA2gWR0CUr4Pbfxc3dX2UKGgGaAloD0MIOzlDcUfNcECUhpRSlGgVTZsBaBZHQJSv2SSvC/J1fZQoaAZoCWgPQwijeQCL/PY+QJSGlFKUaBVL9GgWR0CUsKCZ4Oc2dX2UKGgGaAloD0MIcZF7ujqLcECUhpRSlGgVTXUCaBZHQJS0jRVp9JB1fZQoaAZoCWgPQwh6bTZW4iNjQJSGlFKUaBVN6ANoFkdAlLT176YVqXV9lChoBmgJaA9DCKTeUznt6WBAlIaUUpRoFU3oA2gWR0CUtRJiiItUdX2UKGgGaAloD0MImdnnMYoEckCUhpRSlGgVTe4BaBZHQJS1H3j+7191fZQoaAZoCWgPQwiIDoEjAapxQJSGlFKUaBVNxAJoFkdAlL5kHMUypXV9lChoBmgJaA9DCIeJBil4LXBAlIaUUpRoFU1jAWgWR0CUyhlHSWqtdX2UKGgGaAloD0MITioaaz/LcECUhpRSlGgVTWcBaBZHQJTKKJrLyMF1fZQoaAZoCWgPQwjX3xKAf2dvQJSGlFKUaBVNCwJoFkdAlMuhi5NGmXV9lChoBmgJaA9DCKfOo+I/IHFAlIaUUpRoFU0LAmgWR0CUzgdLQHAzdX2UKGgGaAloD0MIGjbK+s0wbkCUhpRSlGgVTQkCaBZHQJTPH9ZRsM11fZQoaAZoCWgPQwiet7HZkY9wQJSGlFKUaBVNHQJoFkdAlM9jm4iHI3V9lChoBmgJaA9DCAagUbp0C2FAlIaUUpRoFU3oA2gWR0CU6uF85S3tdX2UKGgGaAloD0MIl/+Qfvs0aECUhpRSlGgVTegDaBZHQJTscZuQ6p51fZQoaAZoCWgPQwhyp3Sw/n9BQJSGlFKUaBVLyGgWR0CU7yj1wo9cdX2UKGgGaAloD0MIqWdBKG+UZECUhpRSlGgVTegDaBZHQJTvVo24usd1fZQoaAZoCWgPQwjQs1n1+epwQJSGlFKUaBVNGwFoFkdAlPBClabF0nV9lChoBmgJaA9DCAYRqWmX9GxAlIaUUpRoFU0hAWgWR0CU8JnvDxb0dX2UKGgGaAloD0MIHeVgNgETZECUhpRSlGgVTegDaBZHQJTwsyRB/qh1fZQoaAZoCWgPQwjAdcWM8KVkQJSGlFKUaBVN6ANoFkdAlPFZBC2MKnV9lChoBmgJaA9DCKM6Hcj6JnBAlIaUUpRoFU0AAmgWR0CU8vUT+NtJdX2UKGgGaAloD0MIq7TFNT7qYECUhpRSlGgVTegDaBZHQJTzz5mAbyZ1fZQoaAZoCWgPQwjw4CcOoG1wQJSGlFKUaBVN8AJoFkdAlPTbY5DJEHV9lChoBmgJaA9DCIBHVKguYHBAlIaUUpRoFU2YA2gWR0CU9j2kzoECdX2UKGgGaAloD0MICB9KtCTxcECUhpRSlGgVTU4BaBZHQJT2SFWXC0p1fZQoaAZoCWgPQwi37uapDjdCQJSGlFKUaBVL1WgWR0CU9nS4vvjPdX2UKGgGaAloD0MI6bmFrkTcMUCUhpRSlGgVS8loFkdAlPfmKl54W3V9lChoBmgJaA9DCONxUS0iPEpAlIaUUpRoFUu4aBZHQJT376j32251fZQoaAZoCWgPQwh9lBEXANhtQJSGlFKUaBVNWQFoFkdAlPpc0Ltu1nV9lChoBmgJaA9DCDyFXKnnfG5AlIaUUpRoFU0CAmgWR0CU+s003wTedX2UKGgGaAloD0MINnhflYtVbkCUhpRSlGgVTfgBaBZHQJT83vv0AcV1fZQoaAZoCWgPQwjnj2ltGkRfQJSGlFKUaBVN6ANoFkdAlP/Nx2jfvXV9lChoBmgJaA9DCAPrOH4ou2xAlIaUUpRoFU1vAWgWR0CVAHvNNahYdX2UKGgGaAloD0MIPPn02Ja5b0CUhpRSlGgVTZ8BaBZHQJUBevTw2EV1fZQoaAZoCWgPQwgPYmcK3ZFwQJSGlFKUaBVNPQFoFkdAlQGH9BKL9HV9lChoBmgJaA9DCAN4CySoOnFAlIaUUpRoFU2aAWgWR0CVAq/hVENOdX2UKGgGaAloD0MIXK0Tl6MNckCUhpRSlGgVTTIBaBZHQJUEEMpgCwN1fZQoaAZoCWgPQwi3KR4XVYZwQJSGlFKUaBVNTAFoFkdAlQd+SGJvYXV9lChoBmgJaA9DCLJLVG/NLXFAlIaUUpRoFU3wAWgWR0CVB7JJ5E+gdX2UKGgGaAloD0MId0oH6/88cECUhpRSlGgVTbEBaBZHQJUInd8Aq/d1fZQoaAZoCWgPQwg7U+i8BuhwQJSGlFKUaBVNQwFoFkdAlQqRFNL13HV9lChoBmgJaA9DCEURUrczQG5AlIaUUpRoFU0eAWgWR0CVCwz/IbOvdX2UKGgGaAloD0MILubnhqbbbECUhpRSlGgVTTsBaBZHQJURqqEOAiF1fZQoaAZoCWgPQwi/fLJiOFlxQJSGlFKUaBVNjQJoFkdAlRNMCYCyQnV9lChoBmgJaA9DCMTt0LCYk3BAlIaUUpRoFUv6aBZHQJUXnTc6/7B1fZQoaAZoCWgPQwgzqaENgIdwQJSGlFKUaBVNHwFoFkdAlRoeO801qHV9lChoBmgJaA9DCOWaApkdK25AlIaUUpRoFU0uAmgWR0CVGiJFspG4dX2UKGgGaAloD0MIXi7iO7FLcUCUhpRSlGgVTbkBaBZHQJUcb7yhBZ91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (177 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 229.3685561457225, "std_reward": 67.52037183505199, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-22T10:37:33.420827"}