File size: 2,288 Bytes
c89e582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4674
- Validation Loss: 0.6405
- Train Overall Precision: 0.7082
- Train Overall Recall: 0.7637
- Train Overall F1: 0.7349
- Train Overall Accuracy: 0.7984
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7185 | 1.4324 | 0.2236 | 0.2805 | 0.2488 | 0.5123 | 0 |
| 1.1768 | 0.9053 | 0.5468 | 0.6744 | 0.6039 | 0.7257 | 1 |
| 0.7782 | 0.6968 | 0.6512 | 0.7250 | 0.6861 | 0.7760 | 2 |
| 0.5777 | 0.6506 | 0.6826 | 0.7682 | 0.7229 | 0.7924 | 3 |
| 0.4674 | 0.6405 | 0.7082 | 0.7637 | 0.7349 | 0.7984 | 4 |
### Framework versions
- Transformers 4.33.3
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.13.3
|