beeks11 commited on
Commit
8dbf267
·
1 Parent(s): 56fffdf

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -139.12 +/- 104.64
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'ppo-LunarLander-v2'
37
- 'wandb_entity': 'DaColdest'
38
- 'capture_video': True
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'DaColdest/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 254.22 +/- 24.08
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1cc5acbe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1cc5acbeb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1cc5acbf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1cc5ad4040>", "_build": "<function ActorCriticPolicy._build at 0x7f1cc5ad40d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1cc5ad4160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1cc5ad41f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1cc5ad4280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1cc5ad4310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1cc5ad43a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1cc5ad4430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1cc5ad44c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1cc5c6bb00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696439031354187839, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1EYLzhcIO60mcIuJvYBrOZ74a6EuseNwAAgD8AAIA/ACeYPJcqmT+6rZE9A1UBv6Ucsj3D7MQ8AAAAAAAAAADmOxe9wzkdumr3Cbnt5fmz9FtVOoqvHzgAAIA/AACAP83BSD1Ir4O6AVeLuzoGPbZM7nI6UdWgOgAAgD8AAIA/s7mxvcMdYLoNyGG6lROjtsLEHzuU8o05AACAPwAAAAAAPw+9TvyqvFOs7Tu6Qho99VYWPv3L670AAIA/AACAP2DKCj5zM6A/Rs5uPvJk9L5r9l0+s+CvPQAAAAAAAAAAzWsZPfb8M7rmN/G62axAtjnCYjszOw86AACAPwAAgD/mOwQ94U6Kus40SLqcfj+1YM0ju76LaDkAAIA/AACAPwCiG70pyCG6kj+fOqKLojUSv5g7tqq9uQAAgD8AAIA/mpOyvPbseboLU+o6Yvq9NU7Jh7oT5wi6AACAPwAAgD9m69O8KZhvuqYaY7saulU4OrscuvbA+zkAAIA/AACAPyYLnD0fNcu5phxPOB/XIrbb4Z075ututwAAgD8AAIA/TU8FvY++YLoSAE06C/ZQNT4z0TooCnG5AACAPwAAgD/N92y9eyqIuh2hVzyBQKe0GNtVO7bvqLMAAIA/AAAAAGaeGzsUaI26amVwt+9wXbIihj665ZqLNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGmhJeVs1sOMAWyUTegDjAF0lEdAoT59B0IToXV9lChoBkdAZFAgVXV9W2gHTegDaAhHQKE/A8IzFdd1fZQoaAZHQGSK1QZXMhZoB03oA2gIR0ChQQfnGKhtdX2UKGgGR0Bogy24NI9UaAdN6ANoCEdAoUF64J/oaHV9lChoBkdAZmP9OymhumgHTegDaAhHQKFEg8mrsB11fZQoaAZHQGWYc/+sHSpoB03oA2gIR0ChRVcdHUc5dX2UKGgGR0Bnhx6D5CWvaAdN6ANoCEdAoUeNC/oJRnV9lChoBkdAYylVZs9B8mgHTegDaAhHQKFHsKgqVhV1fZQoaAZHQGI37zshPj5oB03oA2gIR0ChSpCOearndX2UKGgGR0BlsoAlv60qaAdN6ANoCEdAoU4nBguyvHV9lChoBkdAYzEQNkOI7GgHTegDaAhHQKFPRwYLsrx1fZQoaAZHQGjOIomXw9doB03oA2gIR0ChUnqaXrt3dX2UKGgGR0BpnZew9q1xaAdN6ANoCEdAoVLR7LMcInV9lChoBkdAYfwoHcDbJ2gHTegDaAhHQKFWP6YVqN91fZQoaAZHQGLa5OSGJvZoB03oA2gIR0ChZg0ojOcEdX2UKGgGR0BkB82itaIOaAdN6ANoCEdAoWc/4oJAuHV9lChoBkdAZW5ybx3FDWgHTegDaAhHQKFnkMhouf51fZQoaAZHQGU0sxGlQ/JoB03oA2gIR0ChZ/L8BMi9dX2UKGgGR0Bl0uGKyfL+aAdN6ANoCEdAoWk6Kk2xZHV9lChoBkdAXFUaS9ugpWgHTegDaAhHQKFpgmKIi1R1fZQoaAZHQHIdowVTJhhoB03QAWgIR0ChaigMDwH8dX2UKGgGR0BicGYKIBRyaAdN6ANoCEdAoWtNM9KVZHV9lChoBkdAZydItDlYEGgHTegDaAhHQKFrxxXnyNJ1fZQoaAZHQGenpMxoIv9oB03oA2gIR0ChbV45T6zmdX2UKGgGR0BgZo3PzFuOaAdN6ANoCEdAoW18E7nxKHV9lChoBkdAXwTL9uP3jGgHTegDaAhHQKFwAVYZEUl1fZQoaAZHQGd1ABtDUmVoB03oA2gIR0ChczvPszEadX2UKGgGR0BhLR0wJw85aAdN6ANoCEdAoXRDadtl7XV9lChoBkdAYYa3vx6OYWgHTegDaAhHQKF3PqHoHLR1fZQoaAZHQGPv5IxxkupoB03oA2gIR0ChfIamoBJadX2UKGgGR0Bfgcy8BdUsaAdN6ANoCEdAoYvs3yZrpXV9lChoBkdAZPlwI+nqFGgHTegDaAhHQKGNONxVAA11fZQoaAZHQGTOcM/hVENoB03oA2gIR0ChjZHskY4ydX2UKGgGR0Bhn0jC53C9aAdN6ANoCEdAoY39g4Otn3V9lChoBkdAYBOE7nxJ/WgHTegDaAhHQKGPiGIsRQJ1fZQoaAZHQGRmaDf3vhJoB03oA2gIR0Chj+QJ5VwQdX2UKGgGR0BiY5IYm9g4aAdN6ANoCEdAoZCnL3bmEHV9lChoBkdAZFZT5wfhdmgHTegDaAhHQKGR8UnogV51fZQoaAZHQF86VPva11JoB03oA2gIR0ChkoGOEM9bdX2UKGgGR0BjVdF+d9UkaAdN6ANoCEdAoZRahg3Lm3V9lChoBkdAZwOqrBCUo2gHTegDaAhHQKGUee18b711fZQoaAZHQGKYYd6sySFoB03oA2gIR0Chl0bxd6cBdX2UKGgGR0BmfgPy08eTaAdN6ANoCEdAoZuk2pAD73V9lChoBkdAYmgT37DVIGgHTegDaAhHQKGdFBQemvZ1fZQoaAZHQGKgGdI5HVhoB03oA2gIR0ChoRlPrOZ9dX2UKGgGR0BjlQL3K0UoaAdN6ANoCEdAoaSr1schknV9lChoBkdAZ1yQ+UyHmGgHTegDaAhHQKGxYZpi7TV1fZQoaAZHQGWr9b5dnkFoB03oA2gIR0Chso4YaYNRdX2UKGgGR0BjhKPsAvL6aAdN6ANoCEdAobLaCL/CInV9lChoBkdAZO6LwWnCO2gHTegDaAhHQKGzN5prULF1fZQoaAZHQGTsTMzMzM1oB03oA2gIR0ChtI9AxBVudX2UKGgGR0BlzLSZ0CA+aAdN6ANoCEdAobTaRdQfp3V9lChoBkdAZUyaQ3gk1WgHTegDaAhHQKG1rUG3WnV1fZQoaAZHQGZ3iMYMvytoB03oA2gIR0Cht1rsSkCWdX2UKGgGR0BhJnKwIMScaAdN6ANoCEdAobgOCsfaH3V9lChoBkdAZFMpiI+GGmgHTegDaAhHQKG6ZPepGWl1fZQoaAZHQGKsdUKiPABoB03oA2gIR0Chuo/wZwXJdX2UKGgGR0BwPr17IDHPaAdNDAFoCEdAoby0+iaiK3V9lChoBkdAZ0nAfuCwr2gHTegDaAhHQKG+MXaakRB1fZQoaAZHQGLLB5X2dupoB03oA2gIR0ChwaBqKxcFdX2UKGgGR0BkjFBdD6WPaAdN6ANoCEdAocKKW7e2u3V9lChoBkdAZBLCDVYp2GgHTegDaAhHQKHFOL876pJ1fZQoaAZHQGONBqj8DSxoB03oA2gIR0ChyMm9QGfPdX2UKGgGR0Bjfh9NN8E3aAdN6ANoCEdAoc0n7UG3WnV9lChoBkdAZTm7pV0cO2gHTegDaAhHQKHXPhTfixV1fZQoaAZHQGUu1/lQuVZoB03oA2gIR0Ch16UjkdWAdX2UKGgGR0BkpOTmnwXqaAdN6ANoCEdAodgivX9R8HV9lChoBkdAYb0W69TP0WgHTegDaAhHQKHaa07bL2Z1fZQoaAZHQGBUMBp5/spoB03oA2gIR0Ch22txuKoAdX2UKGgGR0Bn2af4AS39aAdN6ANoCEdAod0wN9YwI3V9lChoBkdASb4GhVU+92gHS75oCEdAod2/642CNHV9lChoBkdAaAmp6yB062gHTegDaAhHQKHd3buc+aB1fZQoaAZHQGfz5N47ihpoB03oA2gIR0Ch33b1h9b5dX2UKGgGR0BixPF5v99/aAdN6ANoCEdAod+TgsK9f3V9lChoBkdAZwwasp5NXmgHTegDaAhHQKHg8mIj4Yd1fZQoaAZHQGI26WPcSGtoB03oA2gIR0Ch4d256MR6dX2UKGgGR0BlPmhufmLcaAdN6ANoCEdAoeSdugpSaXV9lChoBkdAYbJcJMQEp2gHTegDaAhHQKHlgM2FWXF1fZQoaAZHQGGWqm0mdAhoB03oA2gIR0Ch6DLXUYsNdX2UKGgGR0BlmRt52QnyaAdN6ANoCEdAoevCPdVNpXV9lChoBkdAYsJuIhyKemgHTegDaAhHQKHwTsBQvYh1fZQoaAZHQGR2KwpvxYtoB03oA2gIR0Ch/L8M/hVEdX2UKGgGR0Bln2eYlY2baAdN6ANoCEdAof1w4+8oQXV9lChoBkdAaHXcUuctoWgHTegDaAhHQKH/T5zo2XN1fZQoaAZHQGQvm/etSydoB03oA2gIR0CiABpGWldkdX2UKGgGR0Bn/R24d6syaAdN6ANoCEdAogFnXI2fkHV9lChoBkdAZi1rmhdt22gHTegDaAhHQKIB1A0sOG11fZQoaAZHQGLaICMglnhoB03oA2gIR0CiAfCx3V0+dX2UKGgGR0BfgqFM7EHdaAdN6ANoCEdAogOCY7aIvnV9lChoBkdAYR8UbDMvAWgHTegDaAhHQKIDnsfq5b11fZQoaAZHQGNwJiqhlDpoB03oA2gIR0CiBPrxZuAJdX2UKGgGR0Bi3J5Pdl/ZaAdN6ANoCEdAogXuvZAY53V9lChoBkdAbZ1NxlxwQ2gHTeMBaAhHQKIG+ACnxax1fZQoaAZHQGjKZML4N7VoB03oA2gIR0CiCLF/pdKNdX2UKGgGR0BiYISi/O+qaAdN6ANoCEdAogmMOkLx7XV9lChoBkdAYij0hePaMGgHTegDaAhHQKIL6+HrQgN1fZQoaAZHQHHi9UfgaWJoB032AWgIR0CiDvcB+4LDdX2UKGgGR0BkYLIRywOfaAdN6ANoCEdAog8CiItUXHV9lChoBkdAbWO/UvwmV2gHTQEDaAhHQKIUmyZ8a4t1fZQoaAZHQGOTtALRa5hoB03oA2gIR0CiFW2j4593dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4e405e3760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e4e405e37f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4e405e3880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4e405e3910>", "_build": "<function ActorCriticPolicy._build at 0x7e4e405e39a0>", "forward": "<function ActorCriticPolicy.forward at 0x7e4e405e3a30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4e405e3ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e4e405e3b50>", "_predict": "<function ActorCriticPolicy._predict at 0x7e4e405e3be0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e4e405e3c70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4e405e3d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4e405e3d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4e4077f540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701188214857280722, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMCxb3543A/vvPePcpUeb71plw8asT+PAAAAAAAAAAAAMbhPMNZS7ridMo5C/Obtiupirrb9+W4AACAPwAAgD/mnVy9roWOugRcjjlTX4o0mUwOOZsBpbgAAIA/AACAP6ZEgD32xHS62KxKu8QkbLUbJFG6FtBpOgAAgD8AAIA/2oSXvVwjebpt2LU5b5vONSsiYDvDDdC4AACAPwAAgD/m2pg+o0AkP+AoWr7FL4q+LRfeu7rBt7sAAAAAAAAAABoiXL2P1iq64oDKuo29jLVt6Zi6OxHpOQAAgD8AAIA/AMJnvMPdTrrFJac7eo30tv3l8LpQVMC6AACAPwAAgD9N/Ao9e4qvukDF7LpFzQG2UN9gub40BzoAAIA/AACAPzOjW7x7GoC68N1gOZHzVjQLhAY6EmGDuAAAgD8AAIA/M1PYuinoPbqlzck7K7tPOK2OjDr3+ki4AACAPwAAgD+ACRU9yP2dPVjSML7piFe+DdeTvLM79rwAAAAAAAAAAID/ID0JcBk/ssFlvYtedb6E8GA8944cvQAAAAAAAAAAAOfJPEgNj7ojFGs5CWbQNYPB7zr0p4i4AACAPwAAgD/NAM27DKawPs5vjzx1FZy+2SInPbfjDTsAAAAAAAAAAE0bCb1vEB4+mukpvlLIhr6IiEm9Ii+cvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIfQA+6iCeMAWyUTegDjAF0lEdAkku08aGYbHV9lChoBkdAYYD5C4SYgWgHTegDaAhHQJJSIuwosqd1fZQoaAZHQGDyWU0Nz8xoB03oA2gIR0CSWZkxyn1ndX2UKGgGR0Bia0JjUd7waAdN6ANoCEdAkl1alLvkR3V9lChoBkdAYI+CNjslcGgHTegDaAhHQJJgxjiGWUt1fZQoaAZHQGBajZ13dKxoB03oA2gIR0CSYTDiOvMbdX2UKGgGR0Bmhmw/xDsuaAdN6ANoCEdAkmG0rf+CLHV9lChoBkdAZPne40/GEWgHTegDaAhHQJJnH9P1tfp1fZQoaAZHQGdjKoAGSp1oB03oA2gIR0CSaqvK2a2GdX2UKGgGR0BgiGFev6j4aAdN6ANoCEdAkmrsvugHvHV9lChoBkdAYiczgMtsemgHTegDaAhHQJKVnL+xW1d1fZQoaAZHQGGerbQC0WxoB03oA2gIR0CSpnYGt6omdX2UKGgGR0Blmt9MK1G9aAdN6ANoCEdAkqbYqbz9THV9lChoBkdAYrWB+4LCvWgHTegDaAhHQJKnicx0uDl1fZQoaAZHQGAh04aP0ZpoB03oA2gIR0CSp4tKqXF+dX2UKGgGR0BhQZTIeYD1aAdN6ANoCEdAkqpyMkyDZnV9lChoBkdAYgaQA+6iCmgHTegDaAhHQJKrxoqTbFl1fZQoaAZHQGVR/QSi/PBoB03oA2gIR0CSsHxhUipvdX2UKGgGR0BmsucSXdCWaAdN6ANoCEdAkrVjijtXxXV9lChoBkdAYmLXpW3jMmgHTegDaAhHQJK4SD8Lrop1fZQoaAZHQGO7b6guh9NoB03oA2gIR0CSu1jfNzKcdX2UKGgGR0Bk4ngJkXk6aAdN6ANoCEdAkrvO05U96nV9lChoBkdAX5MBuGbkO2gHTegDaAhHQJK8ZpaiblR1fZQoaAZHQGIkh7VrhzhoB03oA2gIR0CSwq9zwMH9dX2UKGgGR0BfgeyeI2wWaAdN6ANoCEdAkscKxHG0eHV9lChoBkdAZHL06o2n9GgHTegDaAhHQJLHYhA4XGh1fZQoaAZHQFyIrMTviLloB03oA2gIR0CS7QInjQzDdX2UKGgGR0BiA53s5XEJaAdN6ANoCEdAkwEwmeDnNnV9lChoBkdAXs5+9alk6WgHTegDaAhHQJMBjSZ0CBB1fZQoaAZHQGP1NbLU1AJoB03oA2gIR0CTAi+YMOPOdX2UKGgGR0BfYnEMspXqaAdN6ANoCEdAkwIxrSE123V9lChoBkdAZy4Kl54W12gHTegDaAhHQJME0ZMtbs51fZQoaAZHQGOeywGGEf1oB03oA2gIR0CTBgu/DcdpdX2UKGgGR0BhzdNN8E3baAdN6ANoCEdAkwqtGI9C/3V9lChoBkdAXsoW3z+WGGgHTegDaAhHQJMPxc0Ltu11fZQoaAZHQGVKsPjGT9toB03oA2gIR0CTEq6iCaqkdX2UKGgGR0Bj4bslb/wRaAdN6ANoCEdAkxWIVM23rnV9lChoBkdAZXgIP9UCJWgHTegDaAhHQJMV5z2exwB1fZQoaAZHQGJ9TXJ5miBoB03oA2gIR0CTFld9Dx9YdX2UKGgGR0Bmjle2NNrTaAdN6ANoCEdAkxs9PgvUSnV9lChoBkdAYSgIKtxMnWgHTegDaAhHQJMeZ24d6s11fZQoaAZHQEqGthd+ocdoB0v/aAhHQJMedl5GBnV1fZQoaAZHQGKboQ4CIUJoB03oA2gIR0CTHqEGqxTsdX2UKGgGR0Bg36Us4DLbaAdN6ANoCEdAk0QRA4XGfnV9lChoBkdAbKWu5jH4oWgHTYMCaAhHQJNNyFnIyTJ1fZQoaAZHQGPmR2bG3nZoB03oA2gIR0CTUgUoKD02dX2UKGgGR0Bkc7PUrkKeaAdN6ANoCEdAk1JZtJnQIHV9lChoBkdAZ3vj5Kvmo2gHTegDaAhHQJNS4e+23KB1fZQoaAZHQGXtE+PikwhoB03oA2gIR0CTUuNy5qdpdX2UKGgGR0BijeUY8+zMaAdN6ANoCEdAk1U/e+Eh7nV9lChoBkdAZS02XLNfPWgHTegDaAhHQJNWUQoTfzl1fZQoaAZHQGQ4M3AEdNpoB03oA2gIR0CTWneDWbw0dX2UKGgGR0Bk5hzLfUF0aAdN6ANoCEdAk2jom9g4O3V9lChoBkdAZV/lum78N2gHTegDaAhHQJNpbJMg2ZR1fZQoaAZHQGDWGQSzw+doB03oA2gIR0CTahhN/OMVdX2UKGgGR0BhLacAiml7aAdN6ANoCEdAk3BPbfxc3XV9lChoBkdAYoCWXTmW+2gHTegDaAhHQJNz5++dsi11fZQoaAZHQGIh3Dm8ujBoB03oA2gIR0CTc/bypaRqdX2UKGgGR0Bm+1ocrAgxaAdN6ANoCEdAk3Qk3juKGnV9lChoBkdAZqFi2lVLjGgHTegDaAhHQJOYjL+xW1d1fZQoaAZHQGQgI4lyBCloB03oA2gIR0CTpTreqJdjdX2UKGgGR0BgSueg+QlsaAdN6ANoCEdAk6l9PP9k0HV9lChoBkdAZ6q+qR2bG2gHTegDaAhHQJOp1SAH3UR1fZQoaAZHQF5p0hNdqtZoB03oA2gIR0CTqmg3cYZVdX2UKGgGR0BjE2x+rlvIaAdN6ANoCEdAk6ppSR8tw3V9lChoBkdAZNMBpYcNpmgHTegDaAhHQJOs2mce8wp1fZQoaAZHQGCBEZ75VOtoB03oA2gIR0CTreoVmBe5dX2UKGgGR0BtpvJDE3sHaAdNowJoCEdAk6/WPYFqz3V9lChoBkdAZaIbRWtEHGgHTegDaAhHQJOxwxCY1Hh1fZQoaAZHQEMC8BdUsFtoB0vpaAhHQJO2YpgCwKV1fZQoaAZHQDO+8an7521oB0v8aAhHQJO3a0UoKD11fZQoaAZHQGH8b961LJ1oB03oA2gIR0CTu8pzLfUGdX2UKGgGR0Bk0G7J4jbBaAdN6ANoCEdAk7wilFc6eXV9lChoBkdAY8+kSmIj4mgHTegDaAhHQJO8mtr9ETh1fZQoaAZHQGDCsXaakRBoB03oA2gIR0CTxJnUlRgrdX2UKGgGR0Becmr4nF5waAdN6ANoCEdAk8Sq0+kgwHV9lChoBkdAYr2od+5OJ2gHTegDaAhHQJPE1wT/Q0J1fZQoaAZHQHHinq/ub7VoB023AWgIR0CTyg64UeuFdX2UKGgGR0BQK8OCoS+QaAdNAQFoCEdAk+jG7voeP3V9lChoBkdAZWBO7g88tGgHTegDaAhHQJPrbAaef7J1fZQoaAZHQGPuXBYV6/toB03oA2gIR0CT9ONn5BTodX2UKGgGR0Bh8qbayrxRaAdN6ANoCEdAk/j7NOdoWnV9lChoBkdAZY2yGBWge2gHTegDaAhHQJP5T3ai9Ix1fZQoaAZHQEnhYU34sVdoB00CAWgIR0CT/FYukDZEdX2UKGgGR0BjoWtlqagFaAdN6ANoCEdAk/yFXA/LT3V9lChoBkdAZnx1Gsmv4mgHTegDaAhHQJP9v/VAiV11fZQoaAZHQGQ/MspXp4doB03oA2gIR0CT//AIppevdX2UKGgGR0BO9pzT4L1FaAdL62gIR0CUCAn/DLr5dX2UKGgGR0Bm5mlXRw6yaAdN6ANoCEdAlAjq/M4cWHV9lChoBkdAYxkOktVaOmgHTegDaAhHQJQKWthd+od1fZQoaAZHQEKfsguAZsNoB0vsaAhHQJQMRWOp84R1fZQoaAZHQGBWLYwqRU5oB03oA2gIR0CUD9qBmPHUdX2UKGgGR0BhsO/etSydaAdN6ANoCEdAlBBHnlnyu3V9lChoBkdAXUNrVOKwZGgHTegDaAhHQJQQys1baAZ1fZQoaAZHQDlBDhLoOhFoB00HAWgIR0CUF7LbYbsGdX2UKGgGR0Bjxx/CqIacaAdN6ANoCEdAlBfAaaTfSHV9lChoBkdAZkcf5DZ13mgHTegDaAhHQJQX5p8F6iV1fZQoaAZHQDX5qZc9nsdoB0v2aAhHQJQcovN/vv11fZQoaAZHQGAhsw+MZP5oB03oA2gIR0CUHL3Roh6jdX2UKGgGR0BMgnyVfNRnaAdL92gIR0CUHQ0Rvm5ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6104b2536753ec028de9dd11e6b5198b910c06159f88d927403ac69579625b4
3
+ size 148046
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4e405e3760>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e4e405e37f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4e405e3880>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4e405e3910>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e4e405e39a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e4e405e3a30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4e405e3ac0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e4e405e3b50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e4e405e3be0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e4e405e3c70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4e405e3d00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4e405e3d90>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e4e4077f540>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701188214857280722,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMCxb3543A/vvPePcpUeb71plw8asT+PAAAAAAAAAAAAMbhPMNZS7ridMo5C/Obtiupirrb9+W4AACAPwAAgD/mnVy9roWOugRcjjlTX4o0mUwOOZsBpbgAAIA/AACAP6ZEgD32xHS62KxKu8QkbLUbJFG6FtBpOgAAgD8AAIA/2oSXvVwjebpt2LU5b5vONSsiYDvDDdC4AACAPwAAgD/m2pg+o0AkP+AoWr7FL4q+LRfeu7rBt7sAAAAAAAAAABoiXL2P1iq64oDKuo29jLVt6Zi6OxHpOQAAgD8AAIA/AMJnvMPdTrrFJac7eo30tv3l8LpQVMC6AACAPwAAgD9N/Ao9e4qvukDF7LpFzQG2UN9gub40BzoAAIA/AACAPzOjW7x7GoC68N1gOZHzVjQLhAY6EmGDuAAAgD8AAIA/M1PYuinoPbqlzck7K7tPOK2OjDr3+ki4AACAPwAAgD+ACRU9yP2dPVjSML7piFe+DdeTvLM79rwAAAAAAAAAAID/ID0JcBk/ssFlvYtedb6E8GA8944cvQAAAAAAAAAAAOfJPEgNj7ojFGs5CWbQNYPB7zr0p4i4AACAPwAAgD/NAM27DKawPs5vjzx1FZy+2SInPbfjDTsAAAAAAAAAAE0bCb1vEB4+mukpvlLIhr6IiEm9Ii+cvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIfQA+6iCeMAWyUTegDjAF0lEdAkku08aGYbHV9lChoBkdAYYD5C4SYgWgHTegDaAhHQJJSIuwosqd1fZQoaAZHQGDyWU0Nz8xoB03oA2gIR0CSWZkxyn1ndX2UKGgGR0Bia0JjUd7waAdN6ANoCEdAkl1alLvkR3V9lChoBkdAYI+CNjslcGgHTegDaAhHQJJgxjiGWUt1fZQoaAZHQGBajZ13dKxoB03oA2gIR0CSYTDiOvMbdX2UKGgGR0Bmhmw/xDsuaAdN6ANoCEdAkmG0rf+CLHV9lChoBkdAZPne40/GEWgHTegDaAhHQJJnH9P1tfp1fZQoaAZHQGdjKoAGSp1oB03oA2gIR0CSaqvK2a2GdX2UKGgGR0BgiGFev6j4aAdN6ANoCEdAkmrsvugHvHV9lChoBkdAYiczgMtsemgHTegDaAhHQJKVnL+xW1d1fZQoaAZHQGGerbQC0WxoB03oA2gIR0CSpnYGt6omdX2UKGgGR0Blmt9MK1G9aAdN6ANoCEdAkqbYqbz9THV9lChoBkdAYrWB+4LCvWgHTegDaAhHQJKnicx0uDl1fZQoaAZHQGAh04aP0ZpoB03oA2gIR0CSp4tKqXF+dX2UKGgGR0BhQZTIeYD1aAdN6ANoCEdAkqpyMkyDZnV9lChoBkdAYgaQA+6iCmgHTegDaAhHQJKrxoqTbFl1fZQoaAZHQGVR/QSi/PBoB03oA2gIR0CSsHxhUipvdX2UKGgGR0BmsucSXdCWaAdN6ANoCEdAkrVjijtXxXV9lChoBkdAYmLXpW3jMmgHTegDaAhHQJK4SD8Lrop1fZQoaAZHQGO7b6guh9NoB03oA2gIR0CSu1jfNzKcdX2UKGgGR0Bk4ngJkXk6aAdN6ANoCEdAkrvO05U96nV9lChoBkdAX5MBuGbkO2gHTegDaAhHQJK8ZpaiblR1fZQoaAZHQGIkh7VrhzhoB03oA2gIR0CSwq9zwMH9dX2UKGgGR0BfgeyeI2wWaAdN6ANoCEdAkscKxHG0eHV9lChoBkdAZHL06o2n9GgHTegDaAhHQJLHYhA4XGh1fZQoaAZHQFyIrMTviLloB03oA2gIR0CS7QInjQzDdX2UKGgGR0BiA53s5XEJaAdN6ANoCEdAkwEwmeDnNnV9lChoBkdAXs5+9alk6WgHTegDaAhHQJMBjSZ0CBB1fZQoaAZHQGP1NbLU1AJoB03oA2gIR0CTAi+YMOPOdX2UKGgGR0BfYnEMspXqaAdN6ANoCEdAkwIxrSE123V9lChoBkdAZy4Kl54W12gHTegDaAhHQJME0ZMtbs51fZQoaAZHQGOeywGGEf1oB03oA2gIR0CTBgu/DcdpdX2UKGgGR0BhzdNN8E3baAdN6ANoCEdAkwqtGI9C/3V9lChoBkdAXsoW3z+WGGgHTegDaAhHQJMPxc0Ltu11fZQoaAZHQGVKsPjGT9toB03oA2gIR0CTEq6iCaqkdX2UKGgGR0Bj4bslb/wRaAdN6ANoCEdAkxWIVM23rnV9lChoBkdAZXgIP9UCJWgHTegDaAhHQJMV5z2exwB1fZQoaAZHQGJ9TXJ5miBoB03oA2gIR0CTFld9Dx9YdX2UKGgGR0Bmjle2NNrTaAdN6ANoCEdAkxs9PgvUSnV9lChoBkdAYSgIKtxMnWgHTegDaAhHQJMeZ24d6s11fZQoaAZHQEqGthd+ocdoB0v/aAhHQJMedl5GBnV1fZQoaAZHQGKboQ4CIUJoB03oA2gIR0CTHqEGqxTsdX2UKGgGR0Bg36Us4DLbaAdN6ANoCEdAk0QRA4XGfnV9lChoBkdAbKWu5jH4oWgHTYMCaAhHQJNNyFnIyTJ1fZQoaAZHQGPmR2bG3nZoB03oA2gIR0CTUgUoKD02dX2UKGgGR0Bkc7PUrkKeaAdN6ANoCEdAk1JZtJnQIHV9lChoBkdAZ3vj5Kvmo2gHTegDaAhHQJNS4e+23KB1fZQoaAZHQGXtE+PikwhoB03oA2gIR0CTUuNy5qdpdX2UKGgGR0BijeUY8+zMaAdN6ANoCEdAk1U/e+Eh7nV9lChoBkdAZS02XLNfPWgHTegDaAhHQJNWUQoTfzl1fZQoaAZHQGQ4M3AEdNpoB03oA2gIR0CTWneDWbw0dX2UKGgGR0Bk5hzLfUF0aAdN6ANoCEdAk2jom9g4O3V9lChoBkdAZV/lum78N2gHTegDaAhHQJNpbJMg2ZR1fZQoaAZHQGDWGQSzw+doB03oA2gIR0CTahhN/OMVdX2UKGgGR0BhLacAiml7aAdN6ANoCEdAk3BPbfxc3XV9lChoBkdAYoCWXTmW+2gHTegDaAhHQJNz5++dsi11fZQoaAZHQGIh3Dm8ujBoB03oA2gIR0CTc/bypaRqdX2UKGgGR0Bm+1ocrAgxaAdN6ANoCEdAk3Qk3juKGnV9lChoBkdAZqFi2lVLjGgHTegDaAhHQJOYjL+xW1d1fZQoaAZHQGQgI4lyBCloB03oA2gIR0CTpTreqJdjdX2UKGgGR0BgSueg+QlsaAdN6ANoCEdAk6l9PP9k0HV9lChoBkdAZ6q+qR2bG2gHTegDaAhHQJOp1SAH3UR1fZQoaAZHQF5p0hNdqtZoB03oA2gIR0CTqmg3cYZVdX2UKGgGR0BjE2x+rlvIaAdN6ANoCEdAk6ppSR8tw3V9lChoBkdAZNMBpYcNpmgHTegDaAhHQJOs2mce8wp1fZQoaAZHQGCBEZ75VOtoB03oA2gIR0CTreoVmBe5dX2UKGgGR0BtpvJDE3sHaAdNowJoCEdAk6/WPYFqz3V9lChoBkdAZaIbRWtEHGgHTegDaAhHQJOxwxCY1Hh1fZQoaAZHQEMC8BdUsFtoB0vpaAhHQJO2YpgCwKV1fZQoaAZHQDO+8an7521oB0v8aAhHQJO3a0UoKD11fZQoaAZHQGH8b961LJ1oB03oA2gIR0CTu8pzLfUGdX2UKGgGR0Bk0G7J4jbBaAdN6ANoCEdAk7wilFc6eXV9lChoBkdAY8+kSmIj4mgHTegDaAhHQJO8mtr9ETh1fZQoaAZHQGDCsXaakRBoB03oA2gIR0CTxJnUlRgrdX2UKGgGR0Becmr4nF5waAdN6ANoCEdAk8Sq0+kgwHV9lChoBkdAYr2od+5OJ2gHTegDaAhHQJPE1wT/Q0J1fZQoaAZHQHHinq/ub7VoB023AWgIR0CTyg64UeuFdX2UKGgGR0BQK8OCoS+QaAdNAQFoCEdAk+jG7voeP3V9lChoBkdAZWBO7g88tGgHTegDaAhHQJPrbAaef7J1fZQoaAZHQGPuXBYV6/toB03oA2gIR0CT9ONn5BTodX2UKGgGR0Bh8qbayrxRaAdN6ANoCEdAk/j7NOdoWnV9lChoBkdAZY2yGBWge2gHTegDaAhHQJP5T3ai9Ix1fZQoaAZHQEnhYU34sVdoB00CAWgIR0CT/FYukDZEdX2UKGgGR0BjoWtlqagFaAdN6ANoCEdAk/yFXA/LT3V9lChoBkdAZnx1Gsmv4mgHTegDaAhHQJP9v/VAiV11fZQoaAZHQGQ/MspXp4doB03oA2gIR0CT//AIppevdX2UKGgGR0BO9pzT4L1FaAdL62gIR0CUCAn/DLr5dX2UKGgGR0Bm5mlXRw6yaAdN6ANoCEdAlAjq/M4cWHV9lChoBkdAYxkOktVaOmgHTegDaAhHQJQKWthd+od1fZQoaAZHQEKfsguAZsNoB0vsaAhHQJQMRWOp84R1fZQoaAZHQGBWLYwqRU5oB03oA2gIR0CUD9qBmPHUdX2UKGgGR0BhsO/etSydaAdN6ANoCEdAlBBHnlnyu3V9lChoBkdAXUNrVOKwZGgHTegDaAhHQJQQys1baAZ1fZQoaAZHQDlBDhLoOhFoB00HAWgIR0CUF7LbYbsGdX2UKGgGR0Bjxx/CqIacaAdN6ANoCEdAlBfAaaTfSHV9lChoBkdAZkcf5DZ13mgHTegDaAhHQJQX5p8F6iV1fZQoaAZHQDX5qZc9nsdoB0v2aAhHQJQcovN/vv11fZQoaAZHQGAhsw+MZP5oB03oA2gIR0CUHL3Roh6jdX2UKGgGR0BMgnyVfNRnaAdL92gIR0CUHQ0Rvm5ldWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e70321f41b7cb65d418d96d7cd3572707010ae72703fefe930ddec0a340a56c1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd195b7d8be9e0db504822897b7002b2bc930913bfebf173e54cfae3eb8cc4f9
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -139.12161503975534, "std_reward": 104.63839158060769, "n_evaluation_episodes": 10, "eval_datetime": "2023-11-28T03:27:36.609788"}
 
1
+ {"mean_reward": 254.2237469721759, "std_reward": 24.08390039467861, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-28T16:40:16.352958"}