Update README.md
Browse files
README.md
CHANGED
@@ -15,41 +15,21 @@ model-index:
|
|
15 |
metrics:
|
16 |
- name: NER Precision
|
17 |
type: precision
|
18 |
-
value: 0.
|
19 |
- name: NER Recall
|
20 |
type: recall
|
21 |
-
value: 0.
|
22 |
- name: NER F Score
|
23 |
type: f_score
|
24 |
-
value: 0.
|
25 |
- task:
|
26 |
name: TAG
|
27 |
type: token-classification
|
28 |
metrics:
|
29 |
- name: TAG (XPOS) Accuracy
|
30 |
type: accuracy
|
31 |
-
value: 0.
|
32 |
-
|
33 |
-
name: UNLABELED_DEPENDENCIES
|
34 |
-
type: token-classification
|
35 |
-
metrics:
|
36 |
-
- name: Unlabeled Attachment Score (UAS)
|
37 |
-
type: f_score
|
38 |
-
value: 0.9208198801
|
39 |
-
- task:
|
40 |
-
name: LABELED_DEPENDENCIES
|
41 |
-
type: token-classification
|
42 |
-
metrics:
|
43 |
-
- name: Labeled Attachment Score (LAS)
|
44 |
-
type: f_score
|
45 |
-
value: 0.9027174273
|
46 |
-
- task:
|
47 |
-
name: SENTS
|
48 |
-
type: token-classification
|
49 |
-
metrics:
|
50 |
-
- name: Sentences F-Score
|
51 |
-
type: f_score
|
52 |
-
value: 0.907098331
|
53 |
library_name: spacy
|
54 |
pipeline_tag: text-classification
|
55 |
---
|
@@ -82,7 +62,7 @@ import spacy
|
|
82 |
nlp = spacy.load("en_ner_job_postings")
|
83 |
|
84 |
# Process your text
|
85 |
-
text = "HR Specialist needed at
|
86 |
doc = nlp(text)
|
87 |
|
88 |
# Extract named entities
|
@@ -127,16 +107,7 @@ The model recognizes the following entity types:
|
|
127 |
|
128 |
| Type | Score |
|
129 |
| --- | --- |
|
130 |
-
| `
|
131 |
-
| `
|
132 |
-
| `
|
133 |
-
| `
|
134 |
-
| `TAG_ACC` | 97.35 |
|
135 |
-
| `SENTS_P` | 92.19 |
|
136 |
-
| `SENTS_R` | 89.27 |
|
137 |
-
| `SENTS_F` | 90.71 |
|
138 |
-
| `DEP_UAS` | 92.08 |
|
139 |
-
| `DEP_LAS` | 90.27 |
|
140 |
-
| `ENTS_P` | 85.16 |
|
141 |
-
| `ENTS_R` | 85.70 |
|
142 |
-
| `ENTS_F` | 85.43 |
|
|
|
15 |
metrics:
|
16 |
- name: NER Precision
|
17 |
type: precision
|
18 |
+
value: 0.7516398746
|
19 |
- name: NER Recall
|
20 |
type: recall
|
21 |
+
value: 0.6069711538
|
22 |
- name: NER F Score
|
23 |
type: f_score
|
24 |
+
value: 0.6742971968
|
25 |
- task:
|
26 |
name: TAG
|
27 |
type: token-classification
|
28 |
metrics:
|
29 |
- name: TAG (XPOS) Accuracy
|
30 |
type: accuracy
|
31 |
+
value: 0.7334810915
|
32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
library_name: spacy
|
34 |
pipeline_tag: text-classification
|
35 |
---
|
|
|
62 |
nlp = spacy.load("en_ner_job_postings")
|
63 |
|
64 |
# Process your text
|
65 |
+
text = "HR Specialist needed at Google, Dallas, TX, with expertise in employee relations and a minimum of 4 years of HR experience."
|
66 |
doc = nlp(text)
|
67 |
|
68 |
# Extract named entities
|
|
|
107 |
|
108 |
| Type | Score |
|
109 |
| --- | --- |
|
110 |
+
| `TOKEN_P` | 75.57 |
|
111 |
+
| `TOKEN_R` | 60.58 |
|
112 |
+
| `TOKEN_F` | 67.57 |
|
113 |
+
| `CUSTOM_TAG_ACC` | 73.35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|