DaFull commited on
Commit
17cf876
·
1 Parent(s): 76760cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -39
README.md CHANGED
@@ -15,41 +15,21 @@ model-index:
15
  metrics:
16
  - name: NER Precision
17
  type: precision
18
- value: 0.8516398746
19
  - name: NER Recall
20
  type: recall
21
- value: 0.8569711538
22
  - name: NER F Score
23
  type: f_score
24
- value: 0.8542971968
25
  - task:
26
  name: TAG
27
  type: token-classification
28
  metrics:
29
  - name: TAG (XPOS) Accuracy
30
  type: accuracy
31
- value: 0.9734810915
32
- - task:
33
- name: UNLABELED_DEPENDENCIES
34
- type: token-classification
35
- metrics:
36
- - name: Unlabeled Attachment Score (UAS)
37
- type: f_score
38
- value: 0.9208198801
39
- - task:
40
- name: LABELED_DEPENDENCIES
41
- type: token-classification
42
- metrics:
43
- - name: Labeled Attachment Score (LAS)
44
- type: f_score
45
- value: 0.9027174273
46
- - task:
47
- name: SENTS
48
- type: token-classification
49
- metrics:
50
- - name: Sentences F-Score
51
- type: f_score
52
- value: 0.907098331
53
  library_name: spacy
54
  pipeline_tag: text-classification
55
  ---
@@ -82,7 +62,7 @@ import spacy
82
  nlp = spacy.load("en_ner_job_postings")
83
 
84
  # Process your text
85
- text = "HR Specialist needed at XYZ Corporation, Dallas, TX, with expertise in employee relations and a minimum of 4 years of HR experience."
86
  doc = nlp(text)
87
 
88
  # Extract named entities
@@ -127,16 +107,7 @@ The model recognizes the following entity types:
127
 
128
  | Type | Score |
129
  | --- | --- |
130
- | `TOKEN_ACC` | 99.86 |
131
- | `TOKEN_P` | 99.57 |
132
- | `TOKEN_R` | 99.58 |
133
- | `TOKEN_F` | 99.57 |
134
- | `TAG_ACC` | 97.35 |
135
- | `SENTS_P` | 92.19 |
136
- | `SENTS_R` | 89.27 |
137
- | `SENTS_F` | 90.71 |
138
- | `DEP_UAS` | 92.08 |
139
- | `DEP_LAS` | 90.27 |
140
- | `ENTS_P` | 85.16 |
141
- | `ENTS_R` | 85.70 |
142
- | `ENTS_F` | 85.43 |
 
15
  metrics:
16
  - name: NER Precision
17
  type: precision
18
+ value: 0.7516398746
19
  - name: NER Recall
20
  type: recall
21
+ value: 0.6069711538
22
  - name: NER F Score
23
  type: f_score
24
+ value: 0.6742971968
25
  - task:
26
  name: TAG
27
  type: token-classification
28
  metrics:
29
  - name: TAG (XPOS) Accuracy
30
  type: accuracy
31
+ value: 0.7334810915
32
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  library_name: spacy
34
  pipeline_tag: text-classification
35
  ---
 
62
  nlp = spacy.load("en_ner_job_postings")
63
 
64
  # Process your text
65
+ text = "HR Specialist needed at Google, Dallas, TX, with expertise in employee relations and a minimum of 4 years of HR experience."
66
  doc = nlp(text)
67
 
68
  # Extract named entities
 
107
 
108
  | Type | Score |
109
  | --- | --- |
110
+ | `TOKEN_P` | 75.57 |
111
+ | `TOKEN_R` | 60.58 |
112
+ | `TOKEN_F` | 67.57 |
113
+ | `CUSTOM_TAG_ACC` | 73.35 |