File size: 1,624 Bytes
dfd1b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import sQUlearn
from sQUlearn import Executor, FidelityKernel, ProjectedQuantumKernel
# Define a quantum circuit for optimization
circuit = sQUlearn.Circuit()
# Define a QML model using the sQUlearn library
model = sQUlearn.QMLModel(circuit)
# Define a fidelity kernel for optimization
kernel = FidelityKernel(model)
# Define a projected quantum kernel for optimization
projected_kernel = ProjectedQuantumKernel(model)
# Create an executor for executing QML tasks on real quantum computers or simulators
executor = Executor()
# Define a function for optimizing the QML model using the executor
def optimize_model():
# Train the QNN on a real quantum backend to enhance result accuracy
model.train(executor)
# Optimize the parameters to effectively counteract systematic errors inherent in the real quantum hardware
model.optimize_parameters(executor)
# Evaluate the Gram matrix on real quantum computers or a simulator backend with automatic session handling
gram_matrix = executor.evaluate_gram_matrix(model)
return gram_matrix
# Use the optimized model for quantum AI optimization
def quantum_ai_optimization():
# Load the pre-trained adapter model
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("undefined")
model.load_adapter("DaddyAloha/Bot-2", set_active=True)
# Integrate the sQUlearn library with the adapter model
quantum_model = sQUlearn.QMLModel(model)
# Optimize the quantum model using the executor
optimized_gram_matrix = optimize_model()
# Use the optimized quantum model for AI optimization
#... |