Adapters
DaddyAloha commited on
Commit
1097b31
·
verified ·
1 Parent(s): b3cf514

Create 100qubits

Browse files
Files changed (1) hide show
  1. 100qubits +81 -0
100qubits ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from qiskit import Aer
3
+ from qiskit.algorithms import QAOA
4
+ from qiskit_optimization.algorithms import MinimumEigenOptimizer
5
+ from qiskit.optimization import QuadraticProgram
6
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
7
+ from sklearn.preprocessing import StandardScaler
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.datasets import make_classification
10
+ from torch import cuda
11
+
12
+ # Quantum Optimization (MaxCut Problem for task optimization)
13
+ def create_maxcut_problem(num_nodes, edges, weights):
14
+ qp = QuadraticProgram()
15
+ for i in range(num_nodes):
16
+ qp.binary_var(f'x{i}')
17
+ for i, j in edges:
18
+ weight = weights.get((i, j), 1)
19
+ qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight})
20
+ return qp
21
+
22
+ def quantum_optimization(qp):
23
+ backend = Aer.get_backend('statevector_simulator')
24
+ qaoa = QAOA(quantum_instance=backend)
25
+ optimizer = MinimumEigenOptimizer(qaoa)
26
+ result = optimizer.solve(qp)
27
+ return result
28
+
29
+ # Load Hugging Face GPT-2 model for text generation
30
+ def load_hugging_face_model():
31
+ model_name = 'gpt2'
32
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
33
+ model = GPT2LMHeadModel.from_pretrained(model_name)
34
+ return model, tokenizer
35
+
36
+ # Quantum-enhanced Machine Learning Model
37
+ def quantum_machine_learning_model(X_train, y_train, X_test, y_test):
38
+ # Classical SVM model as baseline
39
+ from sklearn.svm import SVC
40
+ clf = SVC(kernel='linear')
41
+ clf.fit(X_train, y_train)
42
+ score = clf.score(X_test, y_test)
43
+
44
+ # Quantum optimization (MaxCut Problem)
45
+ maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1})
46
+ quantum_result = quantum_optimization(maxcut_problem)
47
+
48
+ return score, quantum_result
49
+
50
+ # Text generation with Hugging Face GPT-2
51
+ def generate_text(prompt, model, tokenizer, max_length=100):
52
+ inputs = tokenizer.encode(prompt, return_tensors='pt')
53
+ outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.92, temperature=1.0)
54
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
55
+
56
+ # Uncensored Bot with Quantum Optimization for Efficiency
57
+ def quantum_uncensored_bot():
58
+ # Generate synthetic classification data
59
+ X, y = make_classification(n_samples=100, n_features=2, n_classes=2, random_state=42)
60
+ X = StandardScaler().fit_transform(X)
61
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
62
+
63
+ # Run quantum-enhanced machine learning (optimization + SVM)
64
+ accuracy, quantum_result = quantum_machine_learning_model(X_train, y_train, X_test, y_test)
65
+
66
+ # Load the Hugging Face GPT-2 model
67
+ model, tokenizer = load_hugging_face_model()
68
+
69
+ # Generate uncensored text
70
+ prompt = "This is a sample input to the uncensored AI."
71
+ generated_text = generate_text(prompt, model, tokenizer)
72
+
73
+ return accuracy, quantum_result, generated_text
74
+
75
+ # Execute the bot
76
+ accuracy, quantum_result, generated_text = quantum_uncensored_bot()
77
+
78
+ # Print results
79
+ print(f"Accuracy: {accuracy}")
80
+ print(f"Quantum Result: {quantum_result}")
81
+ print(f"Generated Text: {generated_text}")