Create 100qubits
Browse files
100qubits
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from qiskit import Aer
|
3 |
+
from qiskit.algorithms import QAOA
|
4 |
+
from qiskit_optimization.algorithms import MinimumEigenOptimizer
|
5 |
+
from qiskit.optimization import QuadraticProgram
|
6 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.datasets import make_classification
|
10 |
+
from torch import cuda
|
11 |
+
|
12 |
+
# Quantum Optimization (MaxCut Problem for task optimization)
|
13 |
+
def create_maxcut_problem(num_nodes, edges, weights):
|
14 |
+
qp = QuadraticProgram()
|
15 |
+
for i in range(num_nodes):
|
16 |
+
qp.binary_var(f'x{i}')
|
17 |
+
for i, j in edges:
|
18 |
+
weight = weights.get((i, j), 1)
|
19 |
+
qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight})
|
20 |
+
return qp
|
21 |
+
|
22 |
+
def quantum_optimization(qp):
|
23 |
+
backend = Aer.get_backend('statevector_simulator')
|
24 |
+
qaoa = QAOA(quantum_instance=backend)
|
25 |
+
optimizer = MinimumEigenOptimizer(qaoa)
|
26 |
+
result = optimizer.solve(qp)
|
27 |
+
return result
|
28 |
+
|
29 |
+
# Load Hugging Face GPT-2 model for text generation
|
30 |
+
def load_hugging_face_model():
|
31 |
+
model_name = 'gpt2'
|
32 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
33 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
34 |
+
return model, tokenizer
|
35 |
+
|
36 |
+
# Quantum-enhanced Machine Learning Model
|
37 |
+
def quantum_machine_learning_model(X_train, y_train, X_test, y_test):
|
38 |
+
# Classical SVM model as baseline
|
39 |
+
from sklearn.svm import SVC
|
40 |
+
clf = SVC(kernel='linear')
|
41 |
+
clf.fit(X_train, y_train)
|
42 |
+
score = clf.score(X_test, y_test)
|
43 |
+
|
44 |
+
# Quantum optimization (MaxCut Problem)
|
45 |
+
maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1})
|
46 |
+
quantum_result = quantum_optimization(maxcut_problem)
|
47 |
+
|
48 |
+
return score, quantum_result
|
49 |
+
|
50 |
+
# Text generation with Hugging Face GPT-2
|
51 |
+
def generate_text(prompt, model, tokenizer, max_length=100):
|
52 |
+
inputs = tokenizer.encode(prompt, return_tensors='pt')
|
53 |
+
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.92, temperature=1.0)
|
54 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
+
|
56 |
+
# Uncensored Bot with Quantum Optimization for Efficiency
|
57 |
+
def quantum_uncensored_bot():
|
58 |
+
# Generate synthetic classification data
|
59 |
+
X, y = make_classification(n_samples=100, n_features=2, n_classes=2, random_state=42)
|
60 |
+
X = StandardScaler().fit_transform(X)
|
61 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
62 |
+
|
63 |
+
# Run quantum-enhanced machine learning (optimization + SVM)
|
64 |
+
accuracy, quantum_result = quantum_machine_learning_model(X_train, y_train, X_test, y_test)
|
65 |
+
|
66 |
+
# Load the Hugging Face GPT-2 model
|
67 |
+
model, tokenizer = load_hugging_face_model()
|
68 |
+
|
69 |
+
# Generate uncensored text
|
70 |
+
prompt = "This is a sample input to the uncensored AI."
|
71 |
+
generated_text = generate_text(prompt, model, tokenizer)
|
72 |
+
|
73 |
+
return accuracy, quantum_result, generated_text
|
74 |
+
|
75 |
+
# Execute the bot
|
76 |
+
accuracy, quantum_result, generated_text = quantum_uncensored_bot()
|
77 |
+
|
78 |
+
# Print results
|
79 |
+
print(f"Accuracy: {accuracy}")
|
80 |
+
print(f"Quantum Result: {quantum_result}")
|
81 |
+
print(f"Generated Text: {generated_text}")
|