import sQUlearn from sQUlearn import Executor, FidelityKernel, ProjectedQuantumKernel # Define a quantum circuit for optimization circuit = sQUlearn.Circuit() # Define a QML model using the sQUlearn library model = sQUlearn.QMLModel(circuit) # Define a fidelity kernel for optimization kernel = FidelityKernel(model) # Define a projected quantum kernel for optimization projected_kernel = ProjectedQuantumKernel(model) # Create an executor for executing QML tasks on real quantum computers or simulators executor = Executor() # Define a function for optimizing the QML model using the executor def optimize_model(): # Train the QNN on a real quantum backend to enhance result accuracy model.train(executor) # Optimize the parameters to effectively counteract systematic errors inherent in the real quantum hardware model.optimize_parameters(executor) # Evaluate the Gram matrix on real quantum computers or a simulator backend with automatic session handling gram_matrix = executor.evaluate_gram_matrix(model) return gram_matrix # Use the optimized model for quantum AI optimization def quantum_ai_optimization(): # Load the pre-trained adapter model from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("undefined") model.load_adapter("DaddyAloha/Bot-2", set_active=True) # Integrate the sQUlearn library with the adapter model quantum_model = sQUlearn.QMLModel(model) # Optimize the quantum model using the executor optimized_gram_matrix = optimize_model() # Use the optimized quantum model for AI optimization #...