[paths] train = null dev = null vectors = "en_core_web_lg" init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "en" pipeline = ["tok2vec","tagger","parser","attribute_ruler","lemmatizer","ner","textcat_multilabel"] disabled = ["senter"] before_creation = null after_creation = null after_pipeline_creation = null batch_size = 256 tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} vectors = {"@vectors":"spacy.Vectors.v1"} [components] [components.attribute_ruler] source = "en_core_web_lg" [components.lemmatizer] source = "en_core_web_lg" [components.ner] source = "en_core_web_lg" [components.parser] source = "en_core_web_lg" replace_listeners = ["model.tok2vec"] [components.tagger] source = "en_core_web_lg" replace_listeners = ["model.tok2vec"] [components.textcat_multilabel] factory = "textcat_multilabel" scorer = {"@scorers":"spacy.textcat_multilabel_scorer.v2"} threshold = 0.5 [components.textcat_multilabel.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat_multilabel.model.linear_model] @architectures = "spacy.TextCatBOW.v3" exclusive_classes = false length = 262144 ngram_size = 1 no_output_layer = false nO = null [components.textcat_multilabel.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 96 upstream = "*" [components.tok2vec] source = "en_core_web_lg" [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 gold_preproc = false limit = 0 augmenter = null [training] train_corpus = "corpora.train" dev_corpus = "corpora.dev" seed = ${system:seed} gpu_allocator = ${system:gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 5000 max_epochs = 0 max_steps = 100000 eval_frequency = 1000 frozen_components = ["tagger","parser","attribute_ruler","lemmatizer","ner"] before_to_disk = null annotating_components = [] before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = true eps = 0.00000001 learn_rate = 0.001 [training.score_weights] tag_acc = null dep_uas = null dep_las = null dep_las_per_type = null sents_p = null sents_r = null sents_f = null lemma_acc = null ents_f = null ents_p = null ents_r = null ents_per_type = null speed = 0.0 [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null after_init = null [initialize.before_init] @callbacks = "spacy.copy_from_base_model.v1" tokenizer = "en_core_web_lg" vocab = "en_core_web_lg" [initialize.components] [initialize.components.ner] [initialize.components.ner.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/ner.json" [initialize.components.parser] [initialize.components.parser.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/parser.json" [initialize.components.tagger] [initialize.components.tagger.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/tagger.json" [initialize.components.textcat_multilabel] [initialize.components.textcat_multilabel.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/textcat_multilabel.json" [initialize.tokenizer]