--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: estudiante_Swin3D_RLVS results: [] --- # estudiante_Swin3D_RLVS This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0766 - Accuracy: 0.9816 - F1: 0.9816 - Precision: 0.9817 - Recall: 0.9816 - Roc Auc: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 15 - eval_batch_size: 15 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 318 - training_steps: 3180 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.2317 | 1.0160 | 159 | 0.1561 | 0.9412 | 0.9410 | 0.9453 | 0.9412 | 0.9878 | | 0.1354 | 2.0321 | 318 | 0.0908 | 0.9652 | 0.9652 | 0.9654 | 0.9652 | 0.9939 | | 0.0698 | 4.0142 | 477 | 0.1050 | 0.9679 | 0.9679 | 0.9688 | 0.9679 | 0.9952 | | 0.0767 | 5.0302 | 636 | 0.0930 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9972 | | 0.0576 | 7.0123 | 795 | 0.0916 | 0.9786 | 0.9786 | 0.9787 | 0.9786 | 0.9975 | | 0.0514 | 8.0283 | 954 | 0.0840 | 0.9813 | 0.9813 | 0.9814 | 0.9813 | 0.9985 | | 0.0481 | 10.0104 | 1113 | 0.1026 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9980 | | 0.0257 | 11.0264 | 1272 | 0.1148 | 0.9813 | 0.9813 | 0.9814 | 0.9813 | 0.9966 | | 0.03 | 13.0085 | 1431 | 0.1170 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9981 | | 0.0302 | 14.0245 | 1590 | 0.1537 | 0.9733 | 0.9733 | 0.9735 | 0.9733 | 0.9978 | | 0.0414 | 16.0066 | 1749 | 0.1367 | 0.9786 | 0.9786 | 0.9787 | 0.9786 | 0.9981 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3