File size: 28,770 Bytes
8b5c39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# BSD 3-Clause License
#
# Copyright (c) 2022, Tri Dao, [email protected].
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import annotations
import math
import copy
from typing import Any, Dict, Optional, Tuple, Union
from dataclasses import dataclass, field
import torch
import torch.nn as nn
from einops import rearrange
from transformers.activations import ACT2FN
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from .configuration_mixformer_sequential import MixFormerSequentialConfig
@dataclass
class InferenceParams:
"""Inference parameters passed to model to efficiently calculate
and store context during inference.
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
Args:
max_sequence_len: Maximum sequence length.
max_batch_size: Maximum batch size.
sequence_len_offset: Sequence length offset.
batch_size_offset: Batch size offset.
key_value_memory_dict: Key value memory dictionary.
fused_ft_kernel: Whether to use fused kernel for fast inference.
lengths_per_sample: Lengths per sample.
"""
max_sequence_len: int = field(metadata={"help": "Maximum sequence length."})
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
sequence_len_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
key_value_memory_dict: Dict[str, Any] = field(
default_factory=dict, metadata={"help": "Key value memory dictionary."}
)
fused_ft_kernel: bool = field(default=False, metadata={"help": "Whether to use fused kernel for fast inference."})
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
class Embedding(nn.Module):
"""Token embedding with dropout."""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.wte(input_ids)
hidden_states = self.drop(hidden_states)
return hidden_states
class RotaryEmbedding(nn.Module):
"""Rotary embeddings.
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
"""
def __init__(
self,
dim: int,
base: int = 10000,
scale_base: Optional[float] = None,
device: Optional[str] = None,
**kwargs,
) -> None:
super().__init__()
if scale_base is not None:
raise NotImplementedError
# Generate and save the inverse frequency buffer (non-trainable)
self.dim = dim
self.base = base
self.scale_base = scale_base
self.device = device
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
self.register_buffer("inv_freq", inv_freq)
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: int = 0) -> None:
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
seqlen = x.shape[1] + seqlen_offset
# Re-generate the inverse frequency buffer if it's not fp32
# (for instance if model.half() was called)
if self.inv_freq.dtype != "torch.float32":
self.inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim)
)
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(x.dtype)
self._sin_cached = torch.sin(freqs).to(x.dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
def _apply_rotary_emb_qkv(
self,
qkv: torch.FloatTensor,
sin: torch.FloatTensor,
cos: torch.FloatTensor,
sin_k: Optional[torch.FloatTensor] = None,
cos_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, three, _, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
q_rot = qkv[:, :, 0, :, :rotary_dim]
q_pass = qkv[:, :, 0, :, rotary_dim:]
k_rot = qkv[:, :, 1, :, :rotary_dim]
k_pass = qkv[:, :, 1, :, rotary_dim:]
# Splits the queries and keys in half
q1, q2 = q_rot.chunk(2, dim=-1)
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
# Casts to fp32 are necessary to prevent fp16 overflow issues
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
# Computes the new keys and queries, recasting to original dtype
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
return torch.cat(
[
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
qkv[:, :, 2:3, :, :],
],
axis=2,
)
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
# `qkv` is of shape (batch, seqlen, 3, nheads, headdim)
self._update_cos_sin_cache(qkv, seqlen_offset)
return self._apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
class MLP(nn.Module):
"""Multi-Layer Perceptron.
Reference:
Attention Is All You Need.
https://arxiv.org/pdf/1706.03762.pdf.
"""
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
super().__init__()
act_fn = config.activation_function if act_fn is None else act_fn
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
self.fc1 = nn.Linear(config.n_embd, n_inner)
self.fc2 = nn.Linear(n_inner, config.n_embd)
self.act = ACT2FN[act_fn]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SelfAttention(nn.Module):
"""Self-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(
self,
qkv: torch.FloatTensor,
causal: bool = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
causal = self.causal if causal is None else causal
batch_size, seq_len = qkv.shape[0], qkv.shape[1]
q, k, v = qkv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if attention_mask is not None:
padding_mask = torch.full((batch_size, seq_len), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(attention_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(torch.full((seq_len, seq_len), -10000.0, device=scores.device), 1)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
class CrossAttention(nn.Module):
"""Cross-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(
self,
q: torch.FloatTensor,
kv: torch.FloatTensor,
causal: bool = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
causal = self.causal if causal is None else causal
batch_size, seq_len_q = q.shape[0], q.shape[1]
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
seq_len_k = kv.shape[1]
k, v = kv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if attention_mask is not None:
padding_mask = torch.full((batch_size, seq_len_k), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(attention_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(torch.full((seq_len_q, seq_len_k), -10000.0, device=scores.device), 1)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
def find_mha_dims(
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
) -> Tuple[int, int]:
"""Validate and return the number of heads and head dimension for multi-head attention.
Args:
config: Model configuration.
n_head: Number of heads.
head_dim: Head dimension.
Returns:
Number of heads and head dimension.
"""
assert all(
hasattr(config, attr) for attr in ["n_embd", "n_head"]
), "`config` must have `n_embd` and `n_head` attributes."
if head_dim is None:
assert (
config.n_embd % config.n_head == 0
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
if n_head is None and head_dim is None:
head_dim = config.n_embd // config.n_head
n_head = config.n_head
elif n_head is None or head_dim is None:
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
return n_head, head_dim
def update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
"""Update the key-value cache for inference.
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
Args:
kv: Key-value tensor.
inference_params: Inference parameters.
layer_idx: Layer index.
Returns:
Updated key-value tensor.
"""
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
kv_cache = torch.empty(
inference_params.max_batch_size,
inference_params.max_sequence_len,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
inference_params.key_value_memory_dict[layer_idx] = kv_cache
else:
if not inference_params.fused_ft_kernel:
kv_cache = inference_params.key_value_memory_dict[layer_idx]
else:
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
kv_cache = None
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
sequence_start = inference_params.sequence_len_offset
sequence_end = sequence_start + kv.shape[1]
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
if not inference_params.fused_ft_kernel:
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
return kv
assert inference_params.sequence_len_offset == 0
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if kv.dtype == torch.float32 else 8
if kv_cache is not None:
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
k_cache = rearrange(kv_cache[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize).contiguous()
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous()
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
else:
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
)
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(kv[:, :, 1], "b s h d -> b h s d")
return kv
class MHA(nn.Module):
"""Multi-head attention layer."""
def __init__(
self,
config: PretrainedConfig,
dtype: Optional[torch.dtype] = None,
device: Optional[str] = None,
rotary_dim: Optional[int] = None,
rotary_emb_scale_base: Optional[float] = None,
n_head: Optional[int] = None,
head_dim: Optional[int] = None,
bias: bool = True,
causal: bool = True,
softmax_scale: Optional[float] = None,
dropout: float = 0.0,
layer_idx: Optional[int] = None,
return_residual: bool = False,
checkpointing: bool = False,
) -> None:
super().__init__()
# Rotary embedding
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
if self.rotary_emb_dim > 0:
rotary_kwargs = {"device": device}
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
rotary_kwargs["scale_base"] = rotary_emb_scale_base
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
# MLP
self.n_head, self.head_dim = find_mha_dims(config, n_head, head_dim)
op_size = self.n_head * self.head_dim
hidden_size = config.n_embd
self.Wqkv = nn.Linear(hidden_size, 3 * op_size, bias=bias, device=device, dtype=dtype)
self.out_proj = nn.Linear(op_size, hidden_size, bias=bias, device=device, dtype=dtype)
# Attention
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
self.layer_idx = layer_idx
self.return_residual = return_residual
self.checkpointing = checkpointing
def forward(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams] = None,
attention_mask: Optional[torch.BoolTensor] = None,
cu_seqlens: Optional[torch.LongTensor] = None,
max_seqlen: Optional[int] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
qkv = self.Wqkv(x)
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
seqlen_offset = past_key_values.sequence_len_offset if past_key_values is not None else 0
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
if past_key_values is not None:
kv = update_kv_cache(qkv[:, :, 1:], past_key_values, self.layer_idx)
if attention_mask is not None:
attention_mask = attention_mask[0] if isinstance(attention_mask, tuple) else attention_mask
attention_mask = attention_mask.bool().to(qkv.device)
attention_kwargs = {"attention_mask": attention_mask}
if past_key_values is None or seqlen_offset == 0:
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **attention_kwargs)
else:
attn_output = self.inner_attn(qkv, **attention_kwargs)
else:
q = qkv[:, :, 0]
causal = None if past_key_values.sequence_len_offset == 0 else False
attn_output = self.inner_cross_attn(q, kv, causal=causal, **attention_kwargs)
output = rearrange(attn_output, "... h d -> ... (h d)")
output = self.out_proj(output)
return output if not self.return_residual else (output, x)
class ParallelBlock(nn.Module):
"""Parallel block.
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
"""
def __init__(
self,
config: PretrainedConfig,
block_idx: Optional[int] = None,
) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.block_idx = block_idx
self.mixer = MHA(config, layer_idx=block_idx)
self.mlp = MLP(config)
def forward(
self,
hidden_states: torch.FloatTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask)
if isinstance(attn_outputs, tuple):
attn_outputs = attn_outputs[0]
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class CausalLMHead(nn.Module):
"""Causal Language Modeling head.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
logits = self.linear(hidden_states).to(torch.float32)
return logits
class CausalLMLoss(nn.Module):
"""Causal Language Modeling loss.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, shift_labels: bool = True) -> None:
super().__init__()
self.shift_labels = shift_labels
self.loss_fct = nn.CrossEntropyLoss()
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
if self.shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
return loss
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
config_class = MixFormerSequentialConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module) -> None:
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> Dict[str, Any]:
if attention_mask is not None and torch.any(~attention_mask.bool()):
total_seq_len = torch.sum(attention_mask, dim=1)
max_seq_len = torch.max(total_seq_len)
total_seq_len = torch.cat((torch.tensor([0], device=attention_mask.device), total_seq_len)).unsqueeze(1)
cumulative_seq_len = torch.cumsum(total_seq_len, dim=0).squeeze(1).to(torch.int32)
attention_mask = (attention_mask.bool(), cumulative_seq_len, max_seq_len.item())
else:
attention_mask = None
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
past_key_values = InferenceParams(
max_batch_size=input_ids.shape[0],
max_sequence_len=self.config.n_positions,
sequence_len_offset=0,
batch_size_offset=0,
fused_ft_kernel=False,
key_value_memory_dict={},
)
else:
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
input_ids = input_ids[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, MixFormerSequentialPreTrainedModel):
module.gradient_checkpointing = value
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
_no_split_modules = ["ParallelBlock"]
def __init__(self, config: MixFormerSequentialConfig) -> None:
super().__init__(config)
modules = [Embedding(config)]
modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
modules.append(CausalLMHead(config))
self.layers = nn.Sequential(*modules)
self.loss = CausalLMLoss()
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.layers[0].wte
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.layers[0].wte = new_embeddings
def get_output_embeddings(self) -> nn.Linear:
return self.layers[-1].linear
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.layers[-1].linear = new_embeddings
def forward(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
if past_key_values is None and attention_mask is None:
lm_logits = self.layers(input_ids)
else:
hidden_layer = self.layers[0](input_ids)
for module in self.layers[1:-1]:
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
lm_logits = self.layers[-1](hidden_layer)
loss = None
if labels is not None:
loss = self.loss(lm_logits, labels)
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|