Danjie commited on
Commit
b8e3279
·
verified ·
1 Parent(s): f3ef7c1

Added running instruction

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md CHANGED
@@ -1,3 +1,61 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # SQLMaster
6
+ A minimum of 8 GB VRAM is required.
7
+
8
+ ## Colab Example
9
+ https://colab.research.google.com/drive/1kMv2nw4gqsQLkLGUUEAI31XOD_7BykDj?usp=sharing
10
+
11
+ ## Install Prerequisite
12
+ ```bash
13
+ !pip install peft
14
+ !pip install transformers
15
+ !pip install bitsandbytes
16
+ !pip install accelerate
17
+ ```
18
+
19
+ ## Login Using Huggingface Token
20
+ ```bash
21
+ # You need a huggingface token that can access llama2
22
+ from huggingface_hub import notebook_login
23
+ notebook_login()
24
+ ```
25
+
26
+ ## Download Model
27
+ ```python
28
+ import torch
29
+ from peft import PeftModel, PeftConfig
30
+ from transformers import AutoModelForCausalLM, AutoTokenizer
31
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
+
33
+ peft_model_id = "Danjie/SQLMaster"
34
+ config = PeftConfig.from_pretrained(peft_model_id)
35
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
36
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
37
+ model.resize_token_embeddings(len(tokenizer) + 1)
38
+
39
+ # Load the Lora model
40
+ model = PeftModel.from_pretrained(model, peft_model_id)
41
+ ```
42
+
43
+ ## Inference
44
+ ```python
45
+ def create_sql_query(question: str, context: str) -> str:
46
+ input = "Question: " + question + "\nContext:" + context + "\nAnswer"
47
+
48
+ # Encode and move tensor into cuda if applicable.
49
+ encoded_input = tokenizer(input, return_tensors='pt')
50
+ encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
51
+
52
+ output = model.generate(**encoded_input, max_new_tokens=256)
53
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
54
+ response = response[len(input):]
55
+ return response
56
+ ```
57
+
58
+ ## Example
59
+ ```python
60
+ create_sql_query("What is the highest age of users with name Danjie", "CREATE TABLE user (age INTEGER, name STRING)")
61
+ ```