Create handler.py
Browse files- handler.py +25 -0
handler.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class ModelHandler:
|
5 |
+
def __init__(self):
|
6 |
+
self.tokenizer = None
|
7 |
+
self.model = None
|
8 |
+
|
9 |
+
def initialize(self, model_dir):
|
10 |
+
# Load the tokenizer and model
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
12 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_dir)
|
13 |
+
|
14 |
+
def preprocess(self, inputs):
|
15 |
+
# Preprocess the input prompt
|
16 |
+
return self.tokenizer(inputs, return_tensors="pt", padding=True)
|
17 |
+
|
18 |
+
def inference(self, inputs):
|
19 |
+
# Generate text from the model
|
20 |
+
input_ids = inputs["input_ids"]
|
21 |
+
outputs = self.model.generate(input_ids, max_length=200, temperature=0.7)
|
22 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
def postprocess(self, outputs):
|
25 |
+
return {"generated_text": outputs}
|