Commit
·
f5a2b99
1
Parent(s):
b656ffa
Files
Browse files- .gitattributes +6 -0
- README.md +37 -0
- Video1-fake-1-ff.mp4 +3 -0
- Video6-real-1-ff.mp4 +3 -0
- Video8-real-3-ff.mp4 +3 -0
- api.py +149 -0
- app.py +213 -0
- fake-1.mp4 +3 -0
- p1/keras_metadata.pb +3 -0
- p1/saved_model.pb +3 -0
- p1/variables/variables.data-00000-of-00001 +3 -0
- p1/variables/variables.index +0 -0
- packages.txt +3 -0
- real-1.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
fake-1.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
p1/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
real-1.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Video1-fake-1-ff.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
Video6-real-1-ff.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Video8-real-3-ff.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Deepfakes_Video_Detector
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
---
|
10 |
+
|
11 |
+
# Configuration
|
12 |
+
|
13 |
+
`title`: _string_
|
14 |
+
Display title for the Space
|
15 |
+
|
16 |
+
`emoji`: _string_
|
17 |
+
Space emoji (emoji-only character allowed)
|
18 |
+
|
19 |
+
`colorFrom`: _string_
|
20 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
21 |
+
|
22 |
+
`colorTo`: _string_
|
23 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
24 |
+
|
25 |
+
`sdk`: _string_
|
26 |
+
Can be either `gradio`, `streamlit`, or `static`
|
27 |
+
|
28 |
+
`sdk_version` : _string_
|
29 |
+
Only applicable for `streamlit` SDK.
|
30 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
31 |
+
|
32 |
+
`app_file`: _string_
|
33 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
|
34 |
+
Path is relative to the root of the repository.
|
35 |
+
|
36 |
+
`pinned`: _boolean_
|
37 |
+
Whether the Space stays on top of your list.
|
Video1-fake-1-ff.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58262ed5e804069587e393ed06b48e655ca35d7ad58b68c161f5356a14482c48
|
3 |
+
size 1746578
|
Video6-real-1-ff.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad4e54db5f1b0c2f556e039d61ec38e7195edbba6257e266244be64af0bda5e3
|
3 |
+
size 1771036
|
Video8-real-3-ff.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:719f49698458abfa2ff25eb617ff03c5e56ddea51d912d65fbfa44c3db94768a
|
3 |
+
size 8949516
|
api.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, redirect, url_for
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from facenet_pytorch import MTCNN
|
7 |
+
import moviepy.editor as mp
|
8 |
+
from PIL import Image
|
9 |
+
import os
|
10 |
+
import zipfile
|
11 |
+
import json
|
12 |
+
import base64
|
13 |
+
from tensorflow_addons.optimizers import RectifiedAdam # Import the RectifiedAdam optimizer
|
14 |
+
from keras.utils import get_custom_objects # Use tensorflow.keras.utils instead
|
15 |
+
get_custom_objects().update({"RectifiedAdam": RectifiedAdam})
|
16 |
+
|
17 |
+
app = Flask(__name__)
|
18 |
+
|
19 |
+
# Load face detector
|
20 |
+
mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu')
|
21 |
+
|
22 |
+
# DetectionPipeline class
|
23 |
+
class DetectionPipeline:
|
24 |
+
def __init__(self, detector, n_frames=None, batch_size=60, resize=None):
|
25 |
+
self.detector = detector
|
26 |
+
self.n_frames = n_frames
|
27 |
+
self.batch_size = batch_size
|
28 |
+
self.resize = resize
|
29 |
+
|
30 |
+
def __call__(self, filename):
|
31 |
+
v_cap = cv2.VideoCapture(filename)
|
32 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
33 |
+
|
34 |
+
if self.n_frames is None:
|
35 |
+
sample = np.arange(0, v_len)
|
36 |
+
else:
|
37 |
+
sample = np.linspace(0, v_len - 1, self.n_frames).astype(int)
|
38 |
+
|
39 |
+
faces = []
|
40 |
+
frames = []
|
41 |
+
|
42 |
+
for j in range(v_len):
|
43 |
+
success = v_cap.grab()
|
44 |
+
if j in sample:
|
45 |
+
success, frame = v_cap.retrieve()
|
46 |
+
if not success:
|
47 |
+
continue
|
48 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
49 |
+
|
50 |
+
if self.resize is not None:
|
51 |
+
frame = frame.resize([int(d * self.resize) for d in frame.size])
|
52 |
+
|
53 |
+
frames.append(frame)
|
54 |
+
|
55 |
+
if len(frames) % self.batch_size == 0 or j == sample[-1]:
|
56 |
+
boxes, probs = self.detector.detect(frames)
|
57 |
+
|
58 |
+
for i in range(len(frames)):
|
59 |
+
if boxes[i] is None:
|
60 |
+
faces.append(face2)
|
61 |
+
continue
|
62 |
+
|
63 |
+
box = boxes[i][0].astype(int)
|
64 |
+
frame = frames[i]
|
65 |
+
face = frame[box[1]:box[3], box[0]:box[2]]
|
66 |
+
|
67 |
+
if not face.any():
|
68 |
+
faces.append(face2)
|
69 |
+
continue
|
70 |
+
|
71 |
+
face2 = cv2.resize(face, (224, 224))
|
72 |
+
faces.append(face2)
|
73 |
+
|
74 |
+
frames = []
|
75 |
+
|
76 |
+
v_cap.release()
|
77 |
+
|
78 |
+
return faces
|
79 |
+
|
80 |
+
detection_pipeline = DetectionPipeline(detector=mtcnn, n_frames=20, batch_size=60)
|
81 |
+
|
82 |
+
model = tf.keras.models.load_model("./Detecto-DeepFake_Video_Detector/p1")
|
83 |
+
|
84 |
+
def deepfakespredict(input_video):
|
85 |
+
faces = detection_pipeline(input_video)
|
86 |
+
total = 0
|
87 |
+
real = 0
|
88 |
+
fake = 0
|
89 |
+
|
90 |
+
for face in faces:
|
91 |
+
face2 = face / 255
|
92 |
+
pred = model.predict(np.expand_dims(face2, axis=0))[0]
|
93 |
+
total += 1
|
94 |
+
pred2 = pred[1]
|
95 |
+
|
96 |
+
if pred2 > 0.5:
|
97 |
+
fake += 1
|
98 |
+
else:
|
99 |
+
real += 1
|
100 |
+
|
101 |
+
fake_ratio = fake / total
|
102 |
+
text = ""
|
103 |
+
text2 = f"Deepfakes Confidence: {fake_ratio * 100:.2f}%"
|
104 |
+
|
105 |
+
if fake_ratio >= 0.5:
|
106 |
+
text = "The video is FAKE."
|
107 |
+
else:
|
108 |
+
text = "The video is REAL."
|
109 |
+
|
110 |
+
face_frames = []
|
111 |
+
|
112 |
+
for face in faces:
|
113 |
+
face_frame = Image.fromarray(face.astype('uint8'), 'RGB')
|
114 |
+
face_frames.append(face_frame)
|
115 |
+
|
116 |
+
face_frames[0].save('results.gif', save_all=True, append_images=face_frames[1:], duration=250, loop=100)
|
117 |
+
clip = mp.VideoFileClip("results.gif")
|
118 |
+
clip.write_videofile("video.mp4")
|
119 |
+
|
120 |
+
return text, text2, "video.mp4"
|
121 |
+
|
122 |
+
iface = gr.Interface(
|
123 |
+
fn=deepfakespredict,
|
124 |
+
inputs=gr.inputs.Video(type="mp4"),
|
125 |
+
outputs=[
|
126 |
+
gr.outputs.Text(label="Detection Result"),
|
127 |
+
gr.outputs.Text(label="Confidence"),
|
128 |
+
gr.outputs.File(label="Result Video")
|
129 |
+
],
|
130 |
+
live=True,
|
131 |
+
title="EfficientNetV2 Deepfakes Video Detector",
|
132 |
+
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector ",
|
133 |
+
examples=[
|
134 |
+
[open('./Detecto-DeepFake_Video_Detector/Video1-fake-1-ff.mp4', 'rb')],
|
135 |
+
[open('./Detecto-DeepFake_Video_Detector/Video6-real-1-ff.mp4', 'rb')],
|
136 |
+
[open('./Detecto-DeepFake_Video_Detector/Video3-fake-3-ff.mp4', 'rb')],
|
137 |
+
[open('./Detecto-DeepFake_Video_Detector/Video8-real-3-ff.mp4', 'rb')],
|
138 |
+
[open('./Detecto-DeepFake_Video_Detector/real-1.mp4', 'rb')],
|
139 |
+
[open('./Detecto-DeepFake_Video_Detector/fake-1.mp4', 'rb')]
|
140 |
+
]
|
141 |
+
)
|
142 |
+
|
143 |
+
@app.route('/')
|
144 |
+
def index():
|
145 |
+
iface.launch(share=True)
|
146 |
+
return iface.ui()
|
147 |
+
|
148 |
+
if __name__ == '__main__':
|
149 |
+
app.run(debug=True)
|
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import tensorflow_addons
|
6 |
+
|
7 |
+
from facenet_pytorch import MTCNN
|
8 |
+
from PIL import Image
|
9 |
+
import moviepy.editor as mp
|
10 |
+
import os
|
11 |
+
import zipfile
|
12 |
+
|
13 |
+
# local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
|
14 |
+
# zip_ref = zipfile.ZipFile(local_zip, 'r')
|
15 |
+
# zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
16 |
+
# zip_ref.close()
|
17 |
+
|
18 |
+
# Load face detector
|
19 |
+
mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu')
|
20 |
+
|
21 |
+
#Face Detection function, Reference: (Timesler, 2020); Source link: https://www.kaggle.com/timesler/facial-recognition-model-in-pytorch
|
22 |
+
class DetectionPipeline:
|
23 |
+
"""Pipeline class for detecting faces in the frames of a video file."""
|
24 |
+
|
25 |
+
def __init__(self, detector, n_frames=None, batch_size=60, resize=None):
|
26 |
+
"""Constructor for DetectionPipeline class.
|
27 |
+
|
28 |
+
Keyword Arguments:
|
29 |
+
n_frames {int} -- Total number of frames to load. These will be evenly spaced
|
30 |
+
throughout the video. If not specified (i.e., None), all frames will be loaded.
|
31 |
+
(default: {None})
|
32 |
+
batch_size {int} -- Batch size to use with MTCNN face detector. (default: {32})
|
33 |
+
resize {float} -- Fraction by which to resize frames from original prior to face
|
34 |
+
detection. A value less than 1 results in downsampling and a value greater than
|
35 |
+
1 result in upsampling. (default: {None})
|
36 |
+
"""
|
37 |
+
self.detector = detector
|
38 |
+
self.n_frames = n_frames
|
39 |
+
self.batch_size = batch_size
|
40 |
+
self.resize = resize
|
41 |
+
|
42 |
+
def __call__(self, filename):
|
43 |
+
"""Load frames from an MP4 video and detect faces.
|
44 |
+
|
45 |
+
Arguments:
|
46 |
+
filename {str} -- Path to video.
|
47 |
+
"""
|
48 |
+
# Create video reader and find length
|
49 |
+
v_cap = cv2.VideoCapture(filename)
|
50 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
51 |
+
|
52 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
53 |
+
if self.n_frames is None:
|
54 |
+
sample = np.arange(0, v_len)
|
55 |
+
else:
|
56 |
+
sample = np.linspace(0, v_len - 1, self.n_frames).astype(int)
|
57 |
+
|
58 |
+
# Loop through frames
|
59 |
+
faces = []
|
60 |
+
frames = []
|
61 |
+
for j in range(v_len):
|
62 |
+
success = v_cap.grab()
|
63 |
+
if j in sample:
|
64 |
+
# Load frame
|
65 |
+
success, frame = v_cap.retrieve()
|
66 |
+
if not success:
|
67 |
+
continue
|
68 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
69 |
+
# frame = Image.fromarray(frame)
|
70 |
+
|
71 |
+
# Resize frame to desired size
|
72 |
+
if self.resize is not None:
|
73 |
+
frame = frame.resize([int(d * self.resize) for d in frame.size])
|
74 |
+
frames.append(frame)
|
75 |
+
|
76 |
+
# When batch is full, detect faces and reset frame list
|
77 |
+
if len(frames) % self.batch_size == 0 or j == sample[-1]:
|
78 |
+
|
79 |
+
boxes, probs = self.detector.detect(frames)
|
80 |
+
|
81 |
+
for i in range(len(frames)):
|
82 |
+
|
83 |
+
if boxes[i] is None:
|
84 |
+
faces.append(face2) #append previous face frame if no face is detected
|
85 |
+
continue
|
86 |
+
|
87 |
+
box = boxes[i][0].astype(int)
|
88 |
+
frame = frames[i]
|
89 |
+
face = frame[box[1]:box[3], box[0]:box[2]]
|
90 |
+
|
91 |
+
if not face.any():
|
92 |
+
faces.append(face2) #append previous face frame if no face is detected
|
93 |
+
continue
|
94 |
+
|
95 |
+
face2 = cv2.resize(face, (224, 224))
|
96 |
+
|
97 |
+
faces.append(face2)
|
98 |
+
|
99 |
+
frames = []
|
100 |
+
|
101 |
+
v_cap.release()
|
102 |
+
|
103 |
+
return faces
|
104 |
+
|
105 |
+
|
106 |
+
detection_pipeline = DetectionPipeline(detector=mtcnn,n_frames=20, batch_size=60)
|
107 |
+
|
108 |
+
model = tf.keras.models.load_model("./Detecto-DeepFake_Video_Detector/p1")
|
109 |
+
|
110 |
+
|
111 |
+
def deepfakespredict(input_video):
|
112 |
+
|
113 |
+
faces = detection_pipeline(input_video)
|
114 |
+
|
115 |
+
total = 0
|
116 |
+
real = 0
|
117 |
+
fake = 0
|
118 |
+
|
119 |
+
for face in faces:
|
120 |
+
|
121 |
+
face2 = face/255
|
122 |
+
pred = model.predict(np.expand_dims(face2, axis=0))[0]
|
123 |
+
total+=1
|
124 |
+
|
125 |
+
pred2 = pred[1]
|
126 |
+
|
127 |
+
if pred2 > 0.5:
|
128 |
+
fake+=1
|
129 |
+
else:
|
130 |
+
real+=1
|
131 |
+
|
132 |
+
fake_ratio = fake/total
|
133 |
+
|
134 |
+
text =""
|
135 |
+
text2 = "Deepfakes Confidence: " + str(fake_ratio*100) + "%"
|
136 |
+
|
137 |
+
if fake_ratio >= 0.5:
|
138 |
+
text = "The video is FAKE."
|
139 |
+
else:
|
140 |
+
text = "The video is REAL."
|
141 |
+
|
142 |
+
face_frames = []
|
143 |
+
|
144 |
+
for face in faces:
|
145 |
+
face_frame = Image.fromarray(face.astype('uint8'), 'RGB')
|
146 |
+
face_frames.append(face_frame)
|
147 |
+
|
148 |
+
face_frames[0].save('results.gif', save_all=True, append_images=face_frames[1:], duration = 250, loop = 100 )
|
149 |
+
clip = mp.VideoFileClip("results.gif")
|
150 |
+
clip.write_videofile("video.mp4")
|
151 |
+
|
152 |
+
return text, text2, "video.mp4"
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
title="EfficientNetV2 Deepfakes Video Detector"
|
157 |
+
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector by using frame-by-frame detection. \
|
158 |
+
To use it, simply upload your video, or click one of the examples to load them.\
|
159 |
+
This demo and model represent the Final Year Project titled \"Achieving Face Swapped Deepfakes Detection Using EfficientNetV2\" by a CS undergraduate Lee Sheng Yeh. \
|
160 |
+
The examples were extracted from Celeb-DF(V2)(Li et al, 2020) and FaceForensics++(Rossler et al., 2019). Full reference details is available in \"references.txt.\" \
|
161 |
+
The examples are used under fair use to demo the working of the model only. If any copyright is infringed, please contact the researcher via this email: [email protected].\
|
162 |
+
"
|
163 |
+
|
164 |
+
examples = [
|
165 |
+
['./Detecto-DeepFake_Video_Detector/Video1-fake-1-ff.mp4'],
|
166 |
+
['./Detecto-DeepFake_Video_Detector/Video6-real-1-ff.mp4'],
|
167 |
+
['./Detecto-DeepFake_Video_Detector/Video3-fake-3-ff.mp4'],
|
168 |
+
['./Detecto-DeepFake_Video_Detector/Video8-real-3-ff.mp4'],
|
169 |
+
['./Detecto-DeepFake_Video_Detector/real-1.mp4'],
|
170 |
+
['./Detecto-DeepFake_Video_Detector/fake-1.mp4'],
|
171 |
+
]
|
172 |
+
|
173 |
+
gr.Interface(deepfakespredict,
|
174 |
+
inputs = ["video"],
|
175 |
+
outputs=["text","text", gr.outputs.Video(label="Detected face sequence")],
|
176 |
+
title=title,
|
177 |
+
description=description,
|
178 |
+
examples=examples
|
179 |
+
).launch()
|
180 |
+
|
181 |
+
# # Import the necessary module to interact with the Hugging Face Hub.
|
182 |
+
# from huggingface_hub import notebook_login
|
183 |
+
|
184 |
+
# # Perform a login to the Hugging Face Hub.
|
185 |
+
# notebook_login()
|
186 |
+
|
187 |
+
# # Import the HfApi class from the huggingface_hub library.
|
188 |
+
# from huggingface_hub import HfApi
|
189 |
+
|
190 |
+
# # Create an instance of the HfApi class.
|
191 |
+
# api = HfApi()
|
192 |
+
|
193 |
+
# # Define the repository ID by combining the username "dima806" with the model name.
|
194 |
+
# repo_id = f"DarkVision/Deepfake_detection_video"
|
195 |
+
|
196 |
+
# try:
|
197 |
+
# # Attempt to create a new repository on the Hugging Face Model Hub using the specified repo_id.
|
198 |
+
# api.create_repo(repo_id)
|
199 |
+
|
200 |
+
# # If the repository creation is successful, print a message indicating that the repository was created.
|
201 |
+
# print(f"Repo {repo_id} created")
|
202 |
+
# except:
|
203 |
+
# # If an exception is raised, print a message indicating that the repository already exists.
|
204 |
+
# print(f"Repo {repo_id} already exists")
|
205 |
+
|
206 |
+
# # Uploading a folder to the Hugging Face Model Hub
|
207 |
+
# api.upload_folder(
|
208 |
+
# folder_path= "Detecto-DeepFake_Video_Detector/", # The path to the folder to be uploaded
|
209 |
+
# path_in_repo=".", # The path where the folder will be stored in the repository
|
210 |
+
# repo_id=repo_id, # The ID of the repository where the folder will be uploaded
|
211 |
+
# repo_type="model", # The type of the repository (in this case, a model repository)
|
212 |
+
# revision="main" # Revision name
|
213 |
+
# )
|
fake-1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14d58b019d1d2a2be3c8293654b00a5fe7c3912267885eb8a9d42cfde411f91f
|
3 |
+
size 1142692
|
p1/keras_metadata.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8411f85bd22de246fee31adc6bbf0a60d403ac22d8f572154fd77eb866b8daf3
|
3 |
+
size 202114
|
p1/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca17aff86eeedbeab2ace0fc42296a1fe11352c6adb418f04f96c5a3607bd28a
|
3 |
+
size 10505251
|
p1/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6418ccca9c8b62339ccfae9e5e3aae785fbdeed31fa08af7207ad4f0fc94fbbf
|
3 |
+
size 23824720
|
p1/variables/variables.index
ADDED
Binary file (21.2 kB). View file
|
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsm6
|
3 |
+
libxext6
|
real-1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c80effbdbdf7ea5b6b2fab02fa8d4b5dde64aef46c91d6c6911a01e6d03673a4
|
3 |
+
size 1152146
|