File size: 161,412 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
//This is Concedo's shitty adapter for adding python bindings for llama

//Considerations:
//Don't want to use pybind11 due to dependencies on MSVCC
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
//Python will ALWAYS provide the memory, we just write to it.

#include <cmath>
#include <time.h>
#include <mutex>
#include <unordered_map>
#include <unordered_set>
#include "model_adapter.h"
#include "otherarch.h"
#include "llama.h"
#include <vector>
#include <map>
#include <cstdint>
#include <string>
#include <cctype>
#include <locale>

#include "utils.h"

//for easier compilation
//concat source files into one file for compilation purposes
#include "llama_v2.cpp"
#include "llama_v3.cpp"
#include "src/llama.cpp"
#include "gptj_v1.cpp"
#include "gptj_v2.cpp"
#include "gptj_v3.cpp"
#include "gpt2_v1.cpp"
#include "gpt2_v2.cpp"
#include "gpt2_v3.cpp"
#include "rwkv_v2.cpp"
#include "rwkv_v3.cpp"
#include "neox_v2.cpp"
#include "neox_v3.cpp"
#include "mpt_v3.cpp"
#include "examples/llava/clip.h"
#include "examples/llava/llava.h"
#include "common/common.h"

//const
const int extra_context_handle_fragmentation = 120;
const int LLAVA_TOKEN_IDENTIFIER_A = -998; //alternate between both, changing when image changes
const int LLAVA_TOKEN_IDENTIFIER_B = -999;

//shared
std::string executable_path = "";
std::string lora_filename = "";
std::string lora_base = "";
std::string mmproj_filename = "";
std::string draftmodel_filename = "";
int speculative_chunk_amt = 8; //do it in chunks of this many tokens
bool generation_finished;
float last_process_time = 0;
float last_eval_time = 0;
int last_token_count = 0;
int last_seed = -1;
int total_gens = 0;
int last_draft_success = 0;
int last_draft_failed = 0;
stop_reason last_stop_reason = stop_reason::INVALID;
std::vector<std::string> generated_tokens;

llama_grammar *  grammar = nullptr; //currently used grammar
llama_grammar_parser parsed_grammar;
static std::string current_grammar = "";

//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;
static FileFormatExtraMeta file_format_meta;

static gpt_vocab vocab;
static int32_t n_vocab = 0;

static gptj_v1_model gptj_ctx_v1;
static gptj_v2_model gptj_ctx_v2;
static gptj_model gptj_ctx_v3;

static gpt2_v1_model gpt2_ctx_v1;
static gpt2_v2_model gpt2_ctx_v2;
static gpt2_model gpt2_ctx_v3;

static gpt_neox_v2_model neox_ctx_v2;
static gpt_neox_model neox_ctx_v3;

static mpt_model mpt_ctx_v3;

static rwkv_v2_context * rwkv_ctx_v2 = nullptr;
static rwkv_context * rwkv_ctx_v3 = nullptr;

static llama_v2_context * llama_ctx_v2 = nullptr;
static llama_v3_context * llama_ctx_v3 = nullptr;
static llama_context * llama_ctx_v4 = nullptr;
static llama_context * draft_ctx = nullptr; //will remain null if speculative is unused

static clip_ctx * clp_ctx = nullptr; //for llava
static clip_image_u8 * clp_img_data = nullptr; //most recent image
static std::vector<llava_image> llava_images;
static std::vector<int> last_llava_mem; //for storing dummy tokens that will be consumed by llava
static std::string llava_composite_image_signature = ""; //for identifying when the llava images change, we need to invalidate the cache
static int current_llava_identifier = LLAVA_TOKEN_IDENTIFIER_A;
static int vision_max_res = 2048;

static kcpp_params * kcpp_data = nullptr;
static int max_context_limit_at_load = 0;
static int n_past = 0;
static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall
static bool is_quiet = false;
static std::vector<gpt_vocab::id> last_n_tokens;
static std::vector<gpt_vocab::id> current_context_tokens;
static size_t mem_per_token = 0;
static std::vector<float> logits;
static std::vector<int> smartcontext;
static std::vector<std::string> stop_sequence;
static std::vector<int> special_stop_sequence; //for stop sequences that don't have a string representation
static std::vector<std::string> banned_tokens;
static std::vector<int> banned_token_ids;
static std::vector<std::string> banned_phrases;
static std::unordered_multimap<gpt_vocab::id, std::vector<gpt_vocab::id>> dry_sequence_breakers; // Multi-mapping from first token of sequence to tail of sequence (tail is empty for a single token)
static std::vector<int> dry_repeat_count; // Indexed as last_n_tokens
static std::unordered_map<gpt_vocab::id, int> dry_max_token_repeat;
static std::vector<TopPicksData> top_picks_history;
static int remaining_tokens = 0;
static bool early_abort = false;
static std::mutex concat_output_mtx;
static std::string concat_output = "";
static std::string concat_output_reader_copy_poll = ""; //for streaming
static std::string concat_output_reader_copy_res = ""; //for gen response
static std::vector<logit_bias> logit_biases;

static int delayed_generated_tokens_limit = 0;
std::deque<std::string> delayed_generated_tokens; //for use with antislop sampling
static std::map<int,std::vector<int>> antislop_banned_token_ids; //first is the npast position, second is the array of banned ids at that index

inline int kcpp_cpu_has_blas(void) {
#if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
    return 1;
#else
    return 0;
#endif
}

inline bool IsNanCheck(float f)
{
    const unsigned int u = *(unsigned int*)&f;
    return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF);    // Both NaN and qNan.
}

inline bool LogitsDuplicated(std::vector<float> & arr1, std::vector<float> & arr2)
{
    int compareQty = 5;
    if(arr1.size() < compareQty || arr2.size() < compareQty || arr1.size()!=arr2.size())
    {
        printf("\nError: Logit array sizes are bad!\n");
        return false;
    }
    for(int i=0;i<compareQty;++i)
    {
        if(arr1[i]!=arr2[i])
        {
            return false;
        }
    }
    return true;
}


static std::string FileFormatTokenizeID(int id, FileFormat file_format, bool return_special = false)
{
    if(id<0)
    {
        return ""; //placeholder IDs cannot be tokenized!
    }
    if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
    {
        return std::string(llama_v2_token_to_str(llama_ctx_v2, id));
    }
    else if (file_format == FileFormat::GGJT_3)
    {
        return std::string(llama_v3_token_to_str(llama_ctx_v3, id));
    }
    else if(file_format == FileFormat::GGUF_GENERIC)
    {
        return std::string(common_token_to_piece(llama_ctx_v4, id, return_special));
    }
    else
    {
        return vocab.id_to_token[id];
    }
}

static void TokenizeString(const std::string & str_to_tokenize, std::vector<int> & output_tokens, FileFormat file_format, bool add_bos)
{
    if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2  || file_format == FileFormat::GGJT_3 || file_format == FileFormat::GGUF_GENERIC)
    {
        if(file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 )
        {
            output_tokens = ::llama_v2_tokenize(llama_ctx_v2, str_to_tokenize, add_bos);
        }
        else if (file_format == FileFormat::GGML)
        {
            output_tokens = ::legacy_llama_v2_tokenize(llama_ctx_v2, str_to_tokenize, add_bos);
        }
        else if (file_format == FileFormat::GGJT_3)
        {
            output_tokens = ::llama_v3_tokenize(llama_ctx_v3, str_to_tokenize, add_bos);
        }
        else
        {
            output_tokens = ::common_tokenize(llama_ctx_v4, str_to_tokenize, add_bos, true);
            if(add_bos)
            {
                const llama_vocab * tmpvocab = llama_model_get_vocab(&(llama_ctx_v4->model));
                llama_token bostoadd = llama_vocab_bos(tmpvocab);
                if(bostoadd != LLAMA_TOKEN_NULL) //if bos does not exist, do not add it
                {
                    if(output_tokens.size()==0)
                    {
                        output_tokens.push_back(bostoadd);
                    }
                    else
                    {
                        if(output_tokens[0]!=bostoadd)
                        {
                            output_tokens.insert(output_tokens.begin(), 1, bostoadd);
                        }
                    }
                }
            }
        }
    }
    else
    {
        // tokenize the prompt
        output_tokens = ::gpt_tokenize(vocab, str_to_tokenize);
    }
}
static int GetEosID(FileFormat file_format, int32_t n_vocab)
{
    unsigned int eosID = 0;

    if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3 || file_format == FileFormat::GGUF_GENERIC)
    {
        if(file_format == FileFormat::GGUF_GENERIC)
        {
            const llama_vocab * tmpvocab = llama_model_get_vocab(&(llama_ctx_v4->model));
            eosID = llama_vocab_eos(tmpvocab);
        }
        else if(file_format == FileFormat::GGJT_3)
        {
            eosID = llama_v3_token_eos();
        }
        else
        {
            eosID = llama_v3_token_eos();
        }
    }
    else
    {
        if (file_format == FileFormat::GPT2_1 ||
        file_format == FileFormat::GPT2_2 ||
        file_format == FileFormat::GPT2_3 ||
        file_format == FileFormat::GPT2_4 ||
        file_format == FileFormat::GPTJ_1 ||
        file_format == FileFormat::GPTJ_2 ||
        file_format == FileFormat::GPTJ_3 ||
        file_format == FileFormat::GPTJ_4 ||
        file_format == FileFormat::GPTJ_5)
        {
            eosID = 50256;
            if (n_vocab <= eosID)
            {
                //special case, starcoder models use ID 0 for EOS
                eosID = 0;
            }
        }

        if (file_format == FileFormat::RWKV_1 ||
            file_format == FileFormat::RWKV_2 ||
            file_format == FileFormat::NEOX_1 ||
            file_format == FileFormat::NEOX_2 ||
            file_format == FileFormat::NEOX_3 ||
            file_format == FileFormat::NEOX_4 ||
            file_format == FileFormat::NEOX_5 ||
            file_format == FileFormat::NEOX_6 ||
            file_format == FileFormat::NEOX_7 ||
            file_format == FileFormat::MPT_1)
        {
            eosID = 0;
        }
    }
    return eosID;
}
static int GetEotID(FileFormat file_format)
{
    if(file_format == FileFormat::GGUF_GENERIC)
    {
        const llama_vocab * tmpvocab = llama_model_get_vocab(&(llama_ctx_v4->model));
        return llama_vocab_eot(tmpvocab);
    }
    return -1;
}

static float LowestLogit(const std::vector<float> & logits)
{
    int topid = std::min_element(logits.begin(), logits.end()) - logits.begin();
    float v = logits[topid];
    return (v < 0 ? (v-8) : 0);
}
static float LowestLogit(const float *logits, size_t size)
{
    if (size == 0) {
        // Handle the case of an empty array
        return 0.0;
    }
    int topid = std::min_element(logits, logits + size) - logits;
    float v = logits[topid];
    return (v < 0 ? (v-8) : 0);
}

static std::string RemoveBell(const std::string & input) //removes the bell character
{
    std::string word2;
    std::remove_copy(input.begin(), input.end(), std::back_inserter(word2), '\a');
    return word2;
}

static std::string get_tok_vec_str(std::vector<int> &embd)
{
    std::string tmp = "";
    for (auto id : embd)
    {
        tmp += "'" + FileFormatTokenizeID(id, file_format, true) + " (" + std::to_string(id) + ")', ";
    }
    ::utreplace(tmp, "\n", "\\n");
    return tmp;
}
static void print_tok_vec_str(std::vector<int> &vec)
{
    printf("\n[%s]\n", get_tok_vec_str(vec).c_str());
}

bool allExtendedUnicode(const std::string& str) {
    if(str.size()==0)
    {
        return false;
    }
    for (unsigned char c : str) {
        if (c <= 127) {
            return false;
        }
    }
    return true;
}

// Find tokens that completely contain `str`, either as a single token, or as a sequence of tokens.
// It's important to use a hash map for head tokens because some models have many of them.
// For example, the Llama 3 tokenizer has 6570 tokens containing the period ('.') character.
// Single tokens are allowed to extend past `str` at the front and back. This is to allow, for
// instance, the token '.\n' to be a head for both '.' and '\n'. However if a head token
// begins a multi-token sequence, the head can only extend past `str` at the beginning. The
// tail tokens are generated by tokenizing the remainder.
// If max_tail_len is >= 0, the maximum token length of a tail sequence is clamped to this value.
static void GetOverlappingTokenSequences(const std::string& str, std::unordered_multimap<gpt_vocab::id, std::vector<gpt_vocab::id>>& token_sequences, int max_tail_len = -1) {
    bool isAllExtendedUnicode = allExtendedUnicode(str);
    for(int v=0;v<n_vocab;++v)
    {
        std::string word = FileFormatTokenizeID(v, file_format, true);
        if (word.find(str) != std::string::npos)
        {
            // The string is entirely contained within this single token.
            // Ensure that token_sequences only contains one key-value-pair with an empty value.
            auto its = token_sequences.equal_range(v);
            bool empty = false;
            for (auto it = its.first; it != its.second; ++it) {
                if (it->second.empty()) {
                    empty = true;
                    break;
                }
            }
            if (!empty) {
                token_sequences.emplace(v, std::vector<gpt_vocab::id>());
            }
        } else {
            // Check whether a prefix of the string overlaps with a suffix of the token.
            // Just do a naive O(N^2) search, since the worst case is limited by the
            // maximum character length of a token in the vocabulary.
            size_t word_len = word.size(), str_len = str.size();
            size_t pos = -1;
            while ((pos = word.find(str[0], pos + 1)) != std::string::npos) {
                bool match = true;
                size_t i;
                for (i = 1; i < str_len && i + pos < word_len; ++i) {
                    if (word[pos + i] != str[i]) {
                        match = false;
                        break;
                    }
                }
                if (match && !isAllExtendedUnicode) {
                    // We matched to the end of the string. Since `str` is not contained in `word`,
                    // there must be trailing letters in `str`.
                    std::vector<gpt_vocab::id> tokenization;
                    TokenizeString(str.substr(i), tokenization, file_format, false);
                    if (max_tail_len >= 0 && tokenization.size() > max_tail_len) {
                        tokenization.resize(max_tail_len);
                    }

                    // Ensure we don't already have a duplicate matching tokenization.
                    auto its = token_sequences.equal_range(v);
                    bool found = false;
                    for (auto it = its.first; it != its.second; ++it) {
                        if (tokenization == it->second) {
                            found = true;
                            break;
                        }
                    }
                    if (!found)
                    {
                        token_sequences.emplace(v, tokenization);
                    }
                }
            }
        }
    }
}

// Function to convert a UTF-8 encoded string to lowercase
static std::string toLowerCase(const std::string& str) {
    std::string result;
    std::locale loc;

    for (char ch : str) {
        result += std::tolower(ch, loc); // Use locale-aware tolower
    }

    return result;
}


void ContextRewind(std::vector<int> &embd, std::vector<int> &current_context_tokens, int &n_past, std::vector<int> &last_n_tokens, const int amount_rewind)
{
    if(amount_rewind<=0 || current_context_tokens.size()==0)
    {
        return; //do nothing
    }
    if(embd.size()>1)
    {
        printf("\nWARNING: Don't use context rewind when in batch processing phase!\n");
        return;
    }
    bool is_mamba = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture==GGUFArch::ARCH_MAMBA);
    bool is_rwkv_new = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture==GGUFArch::ARCH_RWKV);
    if(file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2 || is_mamba || is_rwkv_new)
    {
        printf("\nWARNING: RNN models do not support context rewind!\n");
        return;
    }

    if (amount_rewind >= last_n_tokens.size())
    {
        last_n_tokens.clear();
    }
    else
    {
        last_n_tokens.resize(last_n_tokens.size() - amount_rewind);
    }

    if(amount_rewind >= top_picks_history.size())
    {
        top_picks_history.clear();
    }
    else
    {
        top_picks_history.resize(top_picks_history.size() - amount_rewind);
    }

    if (amount_rewind >= current_context_tokens.size())
    {
        current_context_tokens.clear();
    }
    else
    {
        current_context_tokens.resize(current_context_tokens.size() - amount_rewind);
    }

    if (amount_rewind >= n_past)
    {
        n_past = 0;
    }
    else
    {
        n_past -= amount_rewind;
    }

    if (file_format == FileFormat::GGUF_GENERIC)
    {
        llama_kv_cache_seq_rm(llama_ctx_v4, 0, n_past, -1);
        if(draft_ctx)
        {
            llama_kv_cache_seq_rm(draft_ctx, 0, n_past, -1);
        }
    }

    embd.clear();
    if(current_context_tokens.size()>0)
    {
        embd.push_back(current_context_tokens[current_context_tokens.size()-1]);
    }
}

const char * kcpp_print_system_info(void) {
    ggml_cpu_init(); // some ARM features are detected at runtime

    static std::string s;

    s  = "";
    s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
    s += "AVX_VNNI = "    + std::to_string(ggml_cpu_has_avx_vnni())    + " | ";
    s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
    s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
    s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
    s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
    s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
    s += "AMX_INT8 = "    + std::to_string(ggml_cpu_has_amx_int8())    + " | ";
    s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
    s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
    s += "SVE = "         + std::to_string(ggml_cpu_has_sve())         + " | ";
    s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
    s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
    s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
    s += "RISCV_VECT = "  + std::to_string(ggml_cpu_has_riscv_v())     + " | ";
    s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
    s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
    s += "SSSE3 = "       + std::to_string(ggml_cpu_has_ssse3())       + " | ";
    s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
    s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
    s += "LLAMAFILE = "   + std::to_string(ggml_cpu_has_llamafile())   + " | ";

    return s.c_str();
}

//loads a model for speculative decoding.
static void speculative_decoding_setup(std::string spec_model_filename, const llama_model_params & base_model_params, const llama_context_params & base_ctx_params, int base_n_vocab, const float * draft_gpusplit, int draft_gpulayers)
{
    llama_model_params draft_model_params = llama_model_default_params();
    llama_context_params draft_ctx_params = llama_context_default_params();

    draft_model_params.use_mmap = base_model_params.use_mmap;
    draft_model_params.use_mlock = base_model_params.use_mlock;
    draft_model_params.n_gpu_layers = draft_gpulayers; //layers offload the speculative model.
    draft_ctx_params.n_ctx = base_ctx_params.n_ctx;
    draft_ctx_params.logits_all = false;
    draft_ctx_params.offload_kqv = base_ctx_params.offload_kqv;
    draft_model_params.main_gpu = base_model_params.main_gpu;
    draft_model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER;
    #if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
    bool ts_all_zero = true;
    for (int i = 0; i < tensor_split_max; ++i) {
        if (draft_gpusplit[i] != 0.0f) {
            ts_all_zero = false;
            break;
        }
    }
    if(!ts_all_zero)
    {
        printf("\nApplying Draft GPU Split...\n");
        draft_model_params.tensor_split = draft_gpusplit;
    }
    #endif
    draft_ctx_params.n_batch = base_ctx_params.n_batch;
    draft_ctx_params.n_ubatch = base_ctx_params.n_ubatch;
    draft_ctx_params.n_threads = base_ctx_params.n_threads;
    draft_ctx_params.n_threads_batch =  base_ctx_params.n_threads_batch;
    draft_ctx_params.flash_attn = base_ctx_params.flash_attn;
    draft_ctx_params.type_k = base_ctx_params.type_k;
    draft_ctx_params.type_v = base_ctx_params.type_v;

    llama_model * draftmodel = llama_model_load_from_file(spec_model_filename.c_str(), draft_model_params);
    draft_ctx = llama_new_context_with_model(draftmodel, draft_ctx_params);
    if(draft_ctx == NULL)
    {
        printf("Error: failed to load speculative decoding draft model '%s'\n", spec_model_filename.c_str());
        printf("Speculative Decoding will not be used!\n");
    }
    else
    {
        const llama_vocab * tmpvocab = llama_model_get_vocab(draftmodel);
        int draftvocab = llama_vocab_n_tokens(tmpvocab);
        if(llama_model_is_recurrent(draftmodel))
        {
            printf("Error: Speculative decoding cannot be used with Recurrent draft models!\n");
            llama_free(draft_ctx);
            draft_ctx = nullptr;
        }
        else if(draftvocab!=base_n_vocab)
        {
            if(debugmode==1)
            {
                printf("WARNING: Draft model vocab of (%d) does not match base vocab of (%d).\nIn debug mode, this restriction is bypassed. However, speculative decoding may malfunction!\n",draftvocab,base_n_vocab);
            }
            else
            {
                int diff = abs(draftvocab-base_n_vocab);
                if(diff <= 256)
                {
                    //allow small differences to work
                    printf("WARNING: Draft model vocab of (%d) does not match base vocab of (%d).\nSpeculative decoding may malfunction!\n",draftvocab,base_n_vocab);
                } else {
                    printf("Error: Draft model vocab of (%d) is too different from base vocab of (%d). Speculative decoding cannot be used!\n",draftvocab,base_n_vocab);
                    printf("If you REALLY want to override this, run in --debugmode and this restriction will be disabled. However, you might encounter unwanted results!\n");
                    llama_free(draft_ctx);
                    draft_ctx = nullptr;
                }

            }
        }
    }
}

static speculative_draft_result speculative_decoding_eval_chunk(llama_context * draft_ctx, llama_context * main_ctx, const llama_tokens & embd, const int n_vocab, const int & n_past)
{
    speculative_draft_result results;
    results.draft_success = false;
    if(embd.size()==0)
    {
        printf("\nERROR: Speculate on empty batch!\n");
        return results;
    }
    if(embd.size()>1)
    {
        printf("\nERROR: Speculative decoding applied on large batch!\n");
        return results;
    }
    int draft_npast = n_past;
    int actual_npast = n_past;
    std::vector<int> temp_embd;
    std::vector<int> drafted_ids;
    temp_embd.push_back(embd[0]);
    drafted_ids.push_back(embd[0]);
    for(int i=0;i<speculative_chunk_amt;++i)
    {
        kcpp_embd_batch batch1 = kcpp_embd_batch(temp_embd, draft_npast, false, false);
        auto draftok = (llama_decode(draft_ctx, batch1.batch)==0);
        if(!draftok)
        {
            printf("\nERROR: Speculative draft model 1 failed!\n");
            return results;
        }
        float * draftlogits = llama_get_logits(draft_ctx);
        //greedy sample the draft model
        int topid = std::max_element(draftlogits, draftlogits + n_vocab) - draftlogits;
        drafted_ids.push_back(topid);
        temp_embd.clear();
        temp_embd.push_back(topid);
        ++draft_npast;
    }
    //now that we have our drafted tokens, we form a batch and PP it

    std::vector<int> real_embd = drafted_ids;
    real_embd.pop_back();
    bool use_mrope = (file_format==FileFormat::GGUF_GENERIC && file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL);
    kcpp_embd_batch batch2 = kcpp_embd_batch(real_embd, actual_npast, use_mrope, true);
    auto draftok = (llama_decode(main_ctx, batch2.batch)==0); //actual eval for big model
    if(!draftok)
    {
        printf("\nERROR: Speculative draft model 2 failed!\n");
        return results;
    }
    results.drafted_amount = 0;
    for(int i=0;i<drafted_ids.size()-1;++i)
    {
         results.drafted_amount += 1;
        float * fulllogits = llama_get_logits_ith(main_ctx,i);
        results.draftids.push_back(drafted_ids[i+1]);
        results.actual_logits.push_back(fulllogits);
    }
    results.draft_success = true;
    return results;
}

// KCPP SAMPLING FUNCTIONS
void sample_softmax(llama_token_data_array * cur_p) {
    GGML_ASSERT(cur_p->size > 0);

    // Sort the logits in descending order
    if (!cur_p->sorted) {
        std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
            return a.logit > b.logit;
        });
        cur_p->sorted = true;
    }

    float max_l = cur_p->data[0].logit;
    float cum_sum = 0.0f;

    for (size_t i = 0; i < cur_p->size; ++i) {
        float p = expf(cur_p->data[i].logit - max_l);
        cur_p->data[i].p = p;
        cum_sum += p;
    }

    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= cum_sum;
    }
}

void sample_top_k(llama_token_data_array * cur_p, int32_t k) {
    // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
    // if (k >= (int32_t)cur_p->size) {
    //     return;
    // }

    if (k <= 0) {
        k = cur_p->size;
    }

    k = std::max(k, (int) 1); //min keep of 1
    k = std::min(k, (int) cur_p->size);

    // Sort scores in descending order
    if (!cur_p->sorted) {
        auto comp = [](const llama_token_data & a, const llama_token_data & b) {
            return a.logit > b.logit;
        };
        if (k <= 128) {
            std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
        } else {
            constexpr int   nbuckets     = 128;
            constexpr float bucket_low   = -10.0f;
            constexpr float bucket_high  =  10.0f;
            constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
            constexpr float bucket_inter = -bucket_low * bucket_scale;

            std::vector<int> bucket_idx(cur_p->size);
            std::vector<int> histo(nbuckets, 0);

            for (int i = 0; i < (int)cur_p->size; ++i) {
                const float val = cur_p->data[i].logit;
                int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
                ib = std::max(0, std::min(nbuckets-1, ib));
                bucket_idx[i] = ib;
                ++histo[ib];
            }
            int nhave = 0;
            int ib = nbuckets - 1;
            for ( ; ib >= 0; --ib) {
                nhave += histo[ib];
                if (nhave >= k) {
                    break;
                }
            }
            std::vector<llama_token_data> tmp_tokens(nhave);
            auto * ptr = tmp_tokens.data();
            std::vector<llama_token_data*> bucket_ptrs;
            bucket_ptrs.reserve(nbuckets - ib);
            for (int j = nbuckets - 1; j >= ib; --j) {
                bucket_ptrs.push_back(ptr);
                ptr += histo[j];
            }
            for (int i = 0; i < (int)cur_p->size; ++i) {
                int j = bucket_idx[i];
                if (j >= ib) {
                    *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
                }
            }

            ptr = tmp_tokens.data();
            int ndone = 0;
            for (int j = nbuckets-1; j > ib; --j) {
                std::sort(ptr, ptr + histo[j], comp);
                ptr += histo[j];
                ndone += histo[j];
            }
            std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);

            std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));

        }
        cur_p->sorted = true;
    }
    cur_p->size = k;
}

llama_token sample_token(llama_token_data_array * candidates, std::mt19937 & rng)
{
    sample_softmax(candidates);
    std::vector<float> probs;
    probs.reserve(candidates->size);
    TopPicksData newpick;

    for (size_t i = 0; i < candidates->size; ++i) {
        probs.push_back(candidates->data[i].p);
    }

    std::discrete_distribution<> dist(probs.begin(), probs.end());
    int idx = dist(rng);

    newpick.selected_token = FileFormatTokenizeID(candidates->data[idx].id, file_format, true);
    float rp1 = (candidates->data[idx].p<=0.0001?0.0001f:candidates->data[idx].p);
    float sprob = logf(rp1);
    sprob = (sprob > 999.0f?999.0f:sprob);
    sprob = (sprob < -999.0f?-999.0f:sprob);
    newpick.selected_logprob = sprob;
    newpick.selected_probability = candidates->data[idx].p;
    newpick.selected_tokenid = candidates->data[idx].id;
    for (size_t i = 0; (i < candidates->size && i<logprobs_max); ++i)
    {
        newpick.tokens.push_back(FileFormatTokenizeID(candidates->data[i].id, file_format, true));
        float rp2 = (candidates->data[i].p<=0.0001?0.0001f:candidates->data[i].p);
        float prob = logf(rp2);
        prob = (prob > 999.0f?999.0f:prob);
        prob = (prob < -999.0f?-999.0f:prob);
        newpick.logprobs.push_back(prob);
        newpick.p.push_back(candidates->data[i].p);
        newpick.tokenid.push_back(candidates->data[i].id);
    }

    top_picks_history.push_back(newpick);

    llama_token result = candidates->data[idx].id;
    return result;
}

llama_token sample_token_mirostat(int n_vocab, llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, int m, float * mu)
{
    float N = float(n_vocab);
    sample_softmax(candidates);
    // Estimate s_hat using the most probable m tokens
    float s_hat = 0.0;
    float sum_ti_bi = 0.0;
    float sum_ti_sq = 0.0;
    for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
        float t_i = logf(float(i + 2) / float(i + 1));
        float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
        sum_ti_bi += t_i * b_i;
        sum_ti_sq += t_i * t_i;
    }
    s_hat = sum_ti_bi / sum_ti_sq;
    // Compute k from the estimated s_hat and target surprise value
    float epsilon_hat = s_hat - 1;
    float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
    // Sample the next word X using top-k sampling
    sample_top_k(candidates, int(k));
    llama_token X = sample_token(candidates, rng);    // Compute error as the difference between observed surprise and target surprise value
    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return candidate.id == X;
    }));
    float observed_surprise = -log2f(candidates->data[X_idx].p);
    float e = observed_surprise - tau;
    // Update mu using the learning rate and error
    *mu = *mu - eta * e;
    return X;
}

llama_token sample_token_mirostat_v2(llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, float * mu)
{
    sample_softmax(candidates);
    // Truncate the words with surprise values greater than mu
    candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return -log2f(candidate.p) > *mu;
    }));

    if (candidates->size == 0) {
        candidates->size = 1;
    }

    // Normalize the probabilities of the remaining words
    sample_softmax(candidates);
    // Sample the next word X from the remaining words
    llama_token X = sample_token(candidates,rng);

    // Compute error as the difference between observed surprise and target surprise value
    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return candidate.id == X;
    }));
    float observed_surprise = -log2f(candidates->data[X_idx].p);
    float e = observed_surprise - tau;
    // Update mu using the learning rate and error
    *mu = *mu - eta * e;
    return X;
}

// Top-a (remove all tokens that have softmax probability less than top_a*m^2 where m is the maximum softmax probability)
// top-a 0 is off (no effect)
void sample_top_a(llama_token_data_array * candidates, float a, size_t min_keep) {
    if (a <= 0.0f || candidates->size<=1) {
        return;
    }

    sample_softmax(candidates);

    // Compute the cumulative probabilities
    float maxprob = candidates->data[0].p;

    float threshold = a * maxprob * maxprob; //tokens with probs less than this are removed
    size_t last_idx = candidates->size;

    for (size_t i = 0; i < candidates->size; ++i) {
        // Go until we reach a value under the threshold
        float checkprob = candidates->data[i].p;
        if (checkprob < threshold && i >= min_keep) {
            last_idx = i;
            break;
        }
    }
    // printf("\n\nCandidates: %d, A:%f, MaxProb: %f, Threshold: %f, LastIdx: %d",candidates->size,a,maxprob,threshold,last_idx);
    // printf("\nCandidates: %f %f %f %f\n",candidates->data[0].p,candidates->data[1].p,candidates->data[2].p,candidates->data[3].p);

    // Resize the output vector to keep only the selected tokens
    candidates->size = last_idx;
}

void sample_xtc(llama_token_data_array * candidates, float xtc_threshold, float xtc_probability, std::mt19937 & rng)
{
    if (xtc_threshold > 0.5f || xtc_probability <= 0.0f || candidates->size <= 1) {
        return;
    }

    std::uniform_real_distribution<float> dist(0.0f, 1.0f);
    float roll = dist(rng);
    if(roll>=xtc_probability) //if dice roll fails, skip xtc
    {
        return;
    }

    sample_softmax(candidates);

    //calculate how many tokens cross the xtc threshold
    size_t last_idx = candidates->size;
    for (size_t i = 0; i < candidates->size; ++i) {
        // Go until we reach a value under the threshold
        float checkprob = candidates->data[i].p;
        if (checkprob < xtc_threshold) {
            last_idx = i;
            break;
        }
    }

    if(last_idx>1) //if there are 2 or more viable candidates
    {
        if (debugmode==1 && !is_quiet) {
            printf("XTC penalties [");
        }
        // then remove all other tokens above threshold EXCEPT the least likely one
        for (size_t i = 0; i < last_idx - 1; ++i) {
            if (debugmode==1 && !is_quiet)
            {
                gpt_vocab::id token = candidates->data[i].id;
                std::string tokenizedstr = FileFormatTokenizeID(token, file_format);
                ::utreplace(tokenizedstr, "\n", "\\n");
                printf("%s(%s %.02f%%)", i == 0 ? "" : " ", RemoveBell(tokenizedstr).c_str(), 100.f * candidates->data[i].p);
            }
            candidates->data[i].logit -= 999.0f; //infinity gets wonky results downstream, this hack works well enough
        }
        if (debugmode==1 && !is_quiet) {
            printf("]\n");
        }
        candidates->sorted = false;

    }  //otherwise xtc does not do anything

    // printf("\n\nCandidates: %d, Threshold: %f, LastIdx: %d",candidates->size,xtc_threshold,last_idx);
    // printf("\nCandidates: %f %f %f %f\n",candidates->data[0].p,candidates->data[1].p,candidates->data[2].p,candidates->data[3].p);

}

void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float penalty_base, int allowed_length, const std::unordered_multimap<gpt_vocab::id, std::vector<gpt_vocab::id>>& restart_sequences, llama_token_data_array * candidates) {
    if (penalty_multiplier <= 0.0f || penalty_base <= 0.0f) {
        return;
    }
    if (penalty_range <= 0 || penalty_range>n_ctx) {
        penalty_range = n_ctx;
    }
    auto last_n_repeat = std::min(std::min((int)current_context_tokens.size(), penalty_range), n_ctx);
    if (last_n_repeat <= allowed_length) {
        return;
    }
    const llama_token * last_tokens = current_context_tokens.data() + current_context_tokens.size() - last_n_repeat;

    dry_repeat_count.assign(last_n_repeat, 0);
    dry_max_token_repeat.clear();

    // Step 1: Look for restart sequences to limit the maximum repetition length.
    // Work backwards through the context looking for any token that begins a restart sequence.
    //
    // The collection `restart_sequences` is a mapping from a "head" token to all "tail"
    // sequences that together comprise a restart sequence. This allows us to quickly check
    // whether each token is the head of a complete sequence. Most restart sequences are actually
    // a single token, and for these the "tail" is an empty vector.
    //
    // If the token is a "head", test all restart sequences that begin with this token
    // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
    // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
    // longest matching sequence (if any) is used to limit the maximum repetition length.
    //
    // Note that in the case case of a short sequence contained in a longer one, this might fail to
    // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
    // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
    // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
    //
    // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
    // have already clamped the maximum tail sequence length when generating `restart_sequences`.
    // With clamping, this scan is O(N) in the context length.

    int rep_limit = last_n_repeat;
    for (size_t i = 0; i < last_n_repeat; ++i) {
        size_t ix = last_n_repeat - 1 - i;
        auto its = restart_sequences.equal_range(last_tokens[ix]);
        if (its.first == restart_sequences.end()) {
            continue;
        }
        int longest_match = -1;
        for (auto it = its.first; it != its.second; ++it) {
            // Note that (*it) does not contain the head character, so seq_len will be
            // the restart sequence length minus 1.
            // In the common case of a single-token restart sequence, (*it) will be empty
            // and we will trivially match.
            int seq_len = (int)it->second.size();
            if (seq_len > longest_match && seq_len <= i) {
                bool match = true;
                for (size_t offset = 0; offset < seq_len; ++offset) {
                    // The +1 when indexing `last_tokens` is because we already matched the head.
                    if (it->second[offset] != last_tokens[ix + 1 + offset]) {
                        match = false;
                        break;
                    }
                }
                if (match) {
                    longest_match = seq_len;
                }
            }
        }
        if (longest_match >= 0) {
            // We found a restart sequence starting `i` tokens from the end and continuing for
            // `longest_match` tokens.
            rep_limit = (int)i - longest_match;
            break;
        }
    }
    if (rep_limit <= allowed_length) {
        return;
    }

    // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
    // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
    // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
    //
    // This algorithm is not currently documented on Wikipedia, but there is a clear description here:
    // https://ivanyu.me/blog/2014/10/15/z-algorithm/
    //
    // The code below is adapted from the public domain implementation by the same author here:
    // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
    //
    // Example:
    // Last N tokens: a b c c b c y a b c
    // Repeat counts: 0 0 3 1 0 2 0 0 0 0
    //                    ^
    //   This `3` means that the last three tokens of the context (a b c) also appear here.
    //
    // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
    // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
    // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
    // ensure that the inner while loops only examine each token in the context once as the outer
    // for loop iterates over the context.

    {
        const int last = last_n_repeat - 1;
        int rt = 0, lt = 0;

        for (int k = 1; k < last_n_repeat; ++k) {
            if (k > rt) {
                // If k is outside the current Z-box, do naive computation.
                int n = 0;
                while (n + k < last_n_repeat && last_tokens[last - n] == last_tokens[last - (n+k)]) {
                    ++n;
                }
                dry_repeat_count[last - k] = std::min(n, rep_limit);
                if (n > 0) {
                    lt = k;
                    rt = k+n-1;
                }
            } else {
                // If k is inside the current Z-box, consider two cases.

                int p = k - lt; // Pair index.
                int right_part_len = rt - k + 1;

                if (dry_repeat_count[last - p] < right_part_len) {
                    int n = std::min(dry_repeat_count[last - p], rep_limit);
                    dry_repeat_count[last - k] = n;
                } else {
                    int i = rt + 1;
                    while (i < last_n_repeat && last_tokens[last - i] == last_tokens[last - (i - k)]) {
                        i += 1;
                    }

                    int n = std::min(i - k, rep_limit);
                    dry_repeat_count[last - k] = n;

                    lt = k;
                    rt = i - 1;
                }
            }
        }
    }

    // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
    // that would be generated by emitting each new token that would extend a sequence.
    //
    // Following the same example as above:
    // Last N tokens: a b c c b c y a b c
    // Repeat counts: 0 0 3 1 0 2 0 0 0 0
    //
    // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
    // c: 3 -> 4 (from `a b c` to `a b c c`)
    // b: 1 -> 2 (from `c` to `c b`)
    // y: 2 -> 3 (from `b c` to `b c y`)

    for (size_t i = 0; i < last_n_repeat - 1; ++i) {
        int repeat_len = dry_repeat_count[i];
        if (repeat_len >= allowed_length) {
            // This token ends a repeat, so the next token would continue one.
            // By convention, the value of `repeat_len` only includes the tokens currently
            // in the context, not the new token that would be added.
            gpt_vocab::id token = last_tokens[i + 1];
            // Track the maximum sequence ending in this token.
            const auto& it = dry_max_token_repeat.find(token);
            if (it == dry_max_token_repeat.end() || it->second < repeat_len) {
                dry_max_token_repeat[token] = repeat_len;
            }
        }
    }

    // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.

    // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
    // Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
    const float FLOAT_MAX_LOG = 88.7228391f;
    int max_exponent = 0;
    if (penalty_base > 1.000001f) {
        max_exponent = FLOAT_MAX_LOG / std::log(penalty_base);
    }

    if (debugmode==1 && !is_quiet && !dry_max_token_repeat.empty()) {
        printf("DRY penalties [");
    }
    size_t count = 0;
    for (const auto& kvp: dry_max_token_repeat) {
        gpt_vocab::id token = kvp.first;
        int repeat_exp = kvp.second - allowed_length;
        if (max_exponent > 0 && repeat_exp > max_exponent) {
            repeat_exp = max_exponent;
        }
        float penalty = penalty_multiplier * pow(penalty_base, repeat_exp);
        if (debugmode==1 && !is_quiet)
        {
            std::string tokenizedstr = FileFormatTokenizeID(token, file_format);
            ::utreplace(tokenizedstr, "\n", "\\n");
            printf("%s(%s %.02f)", count == 0 ? "" : " ", RemoveBell(tokenizedstr).c_str(), penalty);
        }
        candidates->data[token].logit -= penalty;
        ++count;
    }
    if(count>0)
    {
        candidates->sorted = false;
    }
    if (debugmode==1 && !is_quiet && !dry_max_token_repeat.empty()) {
        printf("]\n");
    }
}

void sample_rep_pen(int n_ctx, int rep_pen_range, float rep_pen, float rep_pen_slope, float presence_penalty, llama_token_data_array * candidates_p)
{
    auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), rep_pen_range), n_ctx);

    const llama_token * last_tokens =  last_n_tokens.data() + last_n_tokens.size() - last_n_repeat;
    size_t last_tokens_size = last_n_repeat;
    llama_token_data_array * candidates = candidates_p;

    if (last_tokens_size == 0 || (rep_pen == 1.0f && presence_penalty==0)) {
        return;
    }

    const int64_t t_start_sample_us = ggml_time_us();

    // Create a frequency map to count occurrences of each token in last_tokens
    std::unordered_set<llama_token> tokens_near(last_tokens + last_n_repeat / 2, last_tokens + last_n_repeat);
    std::unordered_set<llama_token> tokens_far(last_tokens, last_tokens + last_n_repeat / 2);

    float rep_pen_reduced = rep_pen;
    if(rep_pen_reduced>1.0f)
    {
       rep_pen_reduced = 1.0f + ((rep_pen-1.0f)*rep_pen_slope);
    }
    for (size_t i = 0; i < candidates->size; ++i) {
        const bool token_in_near = tokens_near.find(candidates->data[i].id) != tokens_near.end();
        const bool token_in_far = tokens_far.find(candidates->data[i].id) != tokens_far.end();
        if (!token_in_near && !token_in_far) {
            continue;
        }

        float penalty = (token_in_near?rep_pen:rep_pen_reduced);

        // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
        // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
        if (candidates->data[i].logit <= 0) {
            candidates->data[i].logit *= penalty;
        } else {
            candidates->data[i].logit /= penalty;
        }

        candidates->data[i].logit -= presence_penalty;
    }

    candidates->sorted = false;
}

void sample_top_p(llama_token_data_array * cur_p, float p, size_t min_keep) {
    if (p >= 1.0f) {
        return;
    }

    sample_softmax(cur_p);

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
    size_t last_idx = cur_p->size;

    for (size_t i = 0; i < cur_p->size; ++i) {
        cum_sum += cur_p->data[i].p;

        // Check if the running sum is at least p or if we have kept at least min_keep tokens
        // we set the last index to i+1 to indicate that the current iterate should be included in the set
        if (cum_sum >= p && i + 1 >= min_keep) {
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the top-p tokens
    cur_p->size = last_idx;
}

void sample_min_p(llama_token_data_array * cur_p, float p, size_t min_keep) {
    if (p <= 0.0f || !cur_p->size) {
        return;
    }

    bool min_p_applied = false;

    // if the cur_p aren't sorted, try the unsorted implementation first
    if (!cur_p->sorted) {
        std::vector<llama_token_data> filtered_tokens;

        float max_logit = -FLT_MAX;
        for (size_t i = 0; i < cur_p->size; ++i) {
            max_logit = std::max(max_logit, cur_p->data[i].logit);
        }
        const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max

        for (size_t i = 0; i < cur_p->size; ++i) {
            if (cur_p->data[i].logit >= min_logit) {
                filtered_tokens.push_back(cur_p->data[i]);
            }
        }

        // if we have enough values the operation was a success
        if (filtered_tokens.size() >= min_keep) {
            memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
            cur_p->size = filtered_tokens.size();
            min_p_applied = true;
        }
    }

    // if the cur_p are sorted or the unsorted implementation failed, use this implementation
    if (!min_p_applied) {
        // Sort the logits in descending order
        if (!cur_p->sorted) {
            std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
                return a.logit > b.logit;
            });
            cur_p->sorted = true;
        }

        const float min_logit = cur_p->data[0].logit + logf(p); // min logit for p_i >= p * p_max
        size_t i = 1; // first token always matches

        for (; i < cur_p->size; ++i) {
            if (cur_p->data[i].logit < min_logit && i >= min_keep) {
                break; // prob too small
            }
        }

        // Resize the output vector to keep only the matching tokens
        cur_p->size = i;
    }
}

void sample_tail_free(llama_token_data_array * cur_p, float z, size_t min_keep) {
    if (z >= 1.0f || cur_p->size <= 2) {
        return;
    }

    sample_softmax(cur_p);

    // Compute the first and second derivatives
    std::vector<float> second_derivatives(cur_p->size - 2);
    float second_derivatives_sum = 0.0f;

    for (size_t i = 0; i < second_derivatives.size(); ++i) {
        float first_derivatives_1 = cur_p->data[i].p - cur_p->data[i + 1].p;
        float first_derivatives_2 = cur_p->data[i + 1].p - cur_p->data[i + 2].p;
        second_derivatives[i] = std::abs(first_derivatives_1 - first_derivatives_2);
        second_derivatives_sum += second_derivatives[i];
    }

    // Normalize the second derivatives
    if (second_derivatives_sum > 1e-6f) {
        for (float & value : second_derivatives) {
            value /= second_derivatives_sum;
        }
    } else {
        for (float & value : second_derivatives) {
            value = 1.0f / second_derivatives.size();
        }
    }

    float cum_sum = 0.0f;
    size_t last_idx = cur_p->size;
    for (size_t i = 0; i < second_derivatives.size(); ++i) {
        cum_sum += second_derivatives[i];

        // Check if the running sum is greater than z or if we have kept at least min_keep tokens
        if (cum_sum > z && i >= min_keep) {
            last_idx = i;
            break;
        }
    }

    // Resize the output vector to keep only the tokens above the tail location
    cur_p->size = last_idx;
}

void sampler_typical(llama_token_data_array * cur_p, float p, size_t min_keep) {
    // Reference implementation:
    // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
    if (p >= 1.0f) {
        return;
    }

    // Compute the softmax of logits and calculate entropy
    sample_softmax(cur_p);

    float entropy = 0.0f;
    for (size_t i = 0; i < cur_p->size; ++i) {
        if(cur_p->data[i].p>0)
        {
            entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
        }
    }

    // Compute the absolute difference between negative log probability and entropy for each candidate
    std::vector<float> shifted_scores;
    for (size_t i = 0; i < cur_p->size; ++i) {
        float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
        shifted_scores.push_back(shifted_score);
    }

    // Sort tokens based on the shifted_scores and their corresponding indices
    std::vector<size_t> indices(cur_p->size);
    std::iota(indices.begin(), indices.end(), 0);

    std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
        return shifted_scores[a] < shifted_scores[b];
    });

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
    size_t last_idx = indices.size();

    for (size_t i = 0; i < indices.size(); ++i) {
        size_t idx = indices[i];
        cum_sum += cur_p->data[idx].p;

        // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
        if (cum_sum > p && i >= min_keep - 1) {
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the locally typical tokens
    std::vector<llama_token_data> cur_p_new;
    for (size_t i = 0; i < last_idx; ++i) {
        size_t idx = indices[i];
        cur_p_new.push_back(cur_p->data[idx]);
    }

    // Replace the data in cur_p with the cur_p_new data
    std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
    cur_p->size = cur_p_new.size();
    cur_p->sorted = false;
}

void sample_top_n_sigma(llama_token_data_array * cur_p, float nsigma) {

    if (nsigma <= 0.0f || cur_p->size <= 1) {
        return;
    }
    // find max logit and calculate mean
    float nsigmax = cur_p->data[0].logit;
    float logits_sum = 0;
    for (size_t i = 0; i < cur_p->size; ++i) {
        if (cur_p->data[i].logit > nsigmax) {
            nsigmax = cur_p->data[i].logit;
        }
        logits_sum += cur_p->data[i].logit;
    }
    float nsigmean = logits_sum / cur_p->size;

    // calculate standard deviation
    float nsigacc = 0;
    for (size_t i = 0; i < cur_p->size; ++i) {
        nsigacc += pow(cur_p->data[i].logit - nsigmean, 2);
    }
    float nsigstd = sqrt(nsigacc / cur_p->size);

    //apply mask
    for (size_t i = 0; i < cur_p->size; ++i) {
        if (cur_p->data[i].logit < nsigmax - (nsigma * nsigstd)) {
            cur_p->data[i].logit -= 999.0f;
        }
    }
    sample_softmax(cur_p);
}

void sample_entropy(llama_token_data_array * cur_p, float min_temp, float max_temp, float exponent_val, float smoothing_factor) {
    // no need to do anything if there is only one (or zero) candidates
    if (cur_p->size <= 1) {
        return;
    }

    // Calculate maximum possible entropy
    float max_entropy = -logf(1.0f / cur_p->size);

    sample_softmax(cur_p);

    // Calculate entropy of the softmax probabilities
    float entropy = 0.0f;
    for (size_t i = 0; i < cur_p->size; ++i) {
        float prob = cur_p->data[i].p;
        if (prob > 0.0f) { // Ensure no log(0)
            entropy -= prob * logf(prob);
        }
    }

    // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
    float normalized_entropy = entropy / max_entropy;

    // Map the normalized entropy to the desired temperature range using the power function
    float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);

    // Apply the dynamically calculated temperature scaling
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].logit /= dyn_temp;
    }

    // Re-compute softmax probabilities after scaling logits with dynamic temperature
    const double max_l_double = cur_p->data[0].logit;

    double cum_sum_double = 0.0;
    for (size_t i = 0; i < cur_p->size; ++i) {
        double p = exp(cur_p->data[i].logit - max_l_double);
        cur_p->data[i].p = p; // Store the scaled probability
        cum_sum_double += p;
    }

    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
    }

    // Only apply smoothing if smoothing_factor is > 0. Do not change base implementation otherwise.
    if (smoothing_factor > 0 && cur_p->size > 1) {
        sample_softmax(cur_p);
        float h = cur_p->data[0].logit; // Find the maximum logit for h to be added after the transformation
        // Apply quadratic transformation using the smoothing_factor
        for (size_t i = 0; i < cur_p->size; ++i)
        {
            float logit_shifted = cur_p->data[i].logit - h;
            cur_p->data[i].logit = -smoothing_factor * logit_shifted * logit_shifted + h;
        }
        sample_softmax(cur_p);
    }

}

void sample_temperature(llama_token_data_array * candidates_p, float temp, float smoothing_factor)
{
    bool isgreedy = false;
    if (temp <= 0)
    {
        // Imitate greedy sampling
        temp = 0.00390625f; //cannot be zero else div0, this is 1/256
        smoothing_factor = 0;
        isgreedy = true;
    }

    for (size_t i = 0; i < candidates_p->size; ++i) {
        candidates_p->data[i].logit /= temp;
    }
    // Only apply smoothing if smoothing_factor is > 0. Do not change base implementation otherwise.
    if (smoothing_factor > 0 && candidates_p->size > 1) {
        sample_softmax(candidates_p);
        float h = candidates_p->data[0].logit; // Find the maximum logit for h to be added after the transformation
        // Apply quadratic transformation using the smoothing_factor
        for (size_t i = 0; i < candidates_p->size; ++i)
        {
            float logit_shifted = candidates_p->data[i].logit - h;
            candidates_p->data[i].logit = -smoothing_factor * logit_shifted * logit_shifted + h;
        }
        sample_softmax(candidates_p);
    }

    if(isgreedy)
    {
        sample_top_k(candidates_p, 1); //only want first candidate
    }
}

void sample_grammar(FileFormat file_format, int32_t n_vocab, llama_token_data_array * candidates, const struct llama_grammar * grammar) {

    const int64_t t_start_sample_us = ggml_time_us();

    bool allow_eos = false;
    for (const auto & stack : grammar->stacks) {
        if (stack.empty()) {
            allow_eos = true;
            break;
        }
    }

    const llama_token eos = GetEosID(file_format,n_vocab);
    const llama_token eot = GetEotID(file_format);

    std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
    std::vector<llama_grammar_candidate>                              candidates_grammar;

    for (size_t i = 0; i < candidates->size; ++i) {
        const llama_token id    = candidates->data[i].id;
        const std::string piece = FileFormatTokenizeID(id,file_format);
        if (id == eos || (id==eot && id!=-1)) {
            if (!allow_eos) {
                candidates->data[i].logit = -INFINITY;
            }
        } else if (piece.empty() || piece[0] == 0) {
            candidates->data[i].logit = -INFINITY;
        } else {
            candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
            candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
        }
    }

    const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
    for (const auto & reject : rejects) {
        candidates->data[reject.index].logit = -INFINITY;
    }

}

int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float rep_pen_slope, float presence_penalty, float top_k, float top_a, float top_p, float min_p, float typical_p, float tfs, float nsigma, float temp, std::mt19937 & rng,
int mirostat, float mirostat_tau, float mirostat_eta, float dry_multiplier, float dry_base, int dry_allowed_length, int dry_penalty_last_n, float xtc_threshold, float xtc_probability,
const std::vector<samplers> & sampler_order, llama_grammar * grammar, float dynatemp_range, float dynatemp_exponent, float smoothing_factor)
{
    int id = 0;
    std::vector<llama_token_data> candidates;
    candidates.reserve(n_vocab);
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
    }

    for(int i=0;i<logit_biases.size();++i)
    {
        auto & itm = logit_biases[i];
        candidates[itm.token_id].logit += itm.bias;
    }

    llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

    if (grammar != nullptr) {
        sample_grammar(file_format, n_vocab, &candidates_p, grammar);
    }

    //dry always first as logits cannot be resorted
    sample_dry(n_ctx, dry_penalty_last_n, dry_multiplier, dry_base, dry_allowed_length, dry_sequence_breakers, &candidates_p);

    //prefilter to top 3k tokens for improved speed
    sample_top_k(&candidates_p, 3000);

    if (mirostat == 1 || mirostat == 2)
    {
        static float mirostat_mu = 2.0f * mirostat_tau;
        const int mirostat_m = 100;
        sample_rep_pen(n_ctx, rep_pen_range, rep_pen, rep_pen_slope, presence_penalty, &candidates_p);
        sample_temperature(&candidates_p, temp, smoothing_factor);
        if (mirostat == 1)
        {
            id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
        }
        else
        {
            id = sample_token_mirostat_v2(&candidates_p, rng, mirostat_tau, mirostat_eta, &mirostat_mu);
        }
    }
    else
    {
        for (int i = 0; i < sampler_order.size(); i++)
        {
            switch (sampler_order[i])
            {
                case KCPP_SAMPLER_TOP_K:
                    sample_top_k(&candidates_p, top_k);
                    break;
                case KCPP_SAMPLER_TOP_A:
                    sample_top_a(&candidates_p, top_a, 1);
                    break;
                case KCPP_SAMPLER_TOP_P:
                    sample_top_p(&candidates_p, top_p, 1);
                    sample_min_p(&candidates_p, min_p, 1);
                    break;
                case KCPP_SAMPLER_TFS:
                    sample_tail_free(&candidates_p, tfs, 1);
                    break;
                case KCPP_SAMPLER_TYP:
                    sampler_typical(&candidates_p, typical_p, 1);
                    break;
                case KCPP_SAMPLER_TEMP:
                    if (dynatemp_range!=0)
                    {
                        float dynatemp_min = temp - dynatemp_range;
                        float dynatemp_max = temp + dynatemp_range;
                        //do not allow negative values
                        dynatemp_min = dynatemp_min<0?0:dynatemp_min;
                        dynatemp_max = dynatemp_max<0?0:dynatemp_max;
                        dynatemp_exponent = dynatemp_exponent<0?0:dynatemp_exponent;
                        sample_entropy(&candidates_p, dynatemp_min, dynatemp_max, dynatemp_exponent, smoothing_factor);
                    }
                    else
                    {
                        sample_temperature(&candidates_p, temp, smoothing_factor);
                    }
                    if (nsigma > 0.0f)
                    {
                        sample_top_n_sigma(&candidates_p, nsigma);
                    }
                    break;
                case KCPP_SAMPLER_REP_PEN:
                    sample_rep_pen(n_ctx, rep_pen_range, rep_pen, rep_pen_slope, presence_penalty, &candidates_p);
                    break;
                default:
                    printf("\nSampleLogits: Unknown Sampler : %d",sampler_order[i]);
                    break;
            }
        }
        //xtc always last
        sample_xtc(&candidates_p, xtc_threshold, xtc_probability, rng);
        id = sample_token(&candidates_p, rng);
    }

    return id;
}


static void grammar_accept_token(FileFormat file_format, int32_t n_vocab, struct llama_grammar * grammar, llama_token token)
{
    if (token == GetEosID(file_format,n_vocab) || (token!=-1 && token == GetEotID(file_format))) {
        for (const auto & stack : grammar->stacks) {
            if (stack.empty()) {
                return;
            }
        }
        GGML_ASSERT(false);
    }
    const std::string piece = FileFormatTokenizeID(token,file_format);

    // Note terminating 0 in decoded string
    const auto   decoded     = decode_utf8(piece.c_str(), grammar->partial_utf8);
    const auto & code_points = decoded.first;
    for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
        auto prev_stacks = grammar->stacks;
        llama_grammar_accept(grammar, *it);
    }
    grammar->partial_utf8 = decoded.second;
    GGML_ASSERT(!grammar->stacks.empty());
}

static void load_grammar(const std::string & gammarstr)
{
    if(grammar!=nullptr) //on demand free when next grammar is loaded
    {
        llama_grammar_free_impl(grammar);
        grammar = nullptr;
    }

    if (!gammarstr.empty()) {
        parsed_grammar = llama_grammar_parser();
        parsed_grammar.parse(gammarstr.c_str());
        // will be empty (default) if there are parse errors
        if (parsed_grammar.rules.empty()) {
            printf("\nIgnored invalid grammar sampler.");
            return;
        }
        if(debugmode==1 && !is_quiet)
        {
            parsed_grammar.print(stderr);
        }
        std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
        grammar = llama_grammar_init_impl(nullptr,grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
    }
}

static bool kcpp_eval_image(llama_context * ctx_llama, float * img_embd, int num_img_tokens, int n_batch, int * n_past) {
    int n_embd  = llama_n_embd(llama_get_model(ctx_llama));
    bool use_mrope = (file_format==FileFormat::GGUF_GENERIC && file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL);

    for (int i = 0; i < num_img_tokens; i += n_batch) {
        int n_eval = num_img_tokens - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
        float * embd = img_embd+i*n_embd;
        kcpp_embd_batch llava_batch = kcpp_embd_batch(embd, n_eval, *n_past, use_mrope);
        if (llama_decode(ctx_llama, llava_batch.batch)) {
            fprintf(stderr, "\n%s : failed to eval image\n", __func__);
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

//given an old GGUF context and a new context that has some middle portion removed,
//find and remove the middle portion from the old context from the KV. Does not fast forward after this destructive action
void PurgeMissingTokens(llama_context * ctx, llama_context * draft_ctx, std::vector<int> &current_context_tokens, std::vector<int> &new_context_tokens, const int genamt, const int nctx)
{
    //scan from start old and new ctx, until first mismatch found, save as p0
    //check remaining old and new ctx for longest common subseq, which needs to be at 256 tokens
    //test: longest common subseq (LCQ) MUST start within 0 tokens from end of memory, otherwise purge fails
    //if passed, save beginning of LCQ from old ctx as p1
    //remove all tokens from old ctx between p0 and p1, updating both arrays and kv, then continue as normal

    const int ShortfallThreshold = 200 + std::min((nctx/30),140); //dont trigger shifting if the distance between trimstart and currhead < this
    const int SlackAllowance = 60 + std::min((nctx/60),70); //in case the end text is slightly modified, be forgiving

    int trimstart = 0;
    int new_tokens_len = new_context_tokens.size();
    bool purgeneeded = true;

    for (int i = 0; i < current_context_tokens.size(); ++i)
    {
        if (current_context_tokens[i] == new_context_tokens[i])
        {
            trimstart += 1;
        }
        else
        {
            break;
        }
        if ((i + 2) >= new_tokens_len)
        {
            purgeneeded = false;
            break; //no surgery required
        }
    }

    if(!purgeneeded || new_tokens_len < 6 || current_context_tokens.size() < 6 || new_tokens_len - trimstart < ShortfallThreshold)
    {
        return; //no purge is needed
    }

    //at least this many tokens need to match, otherwise don't bother trimming
    const int LCSTokThreshold = std::max(std::min((new_tokens_len - trimstart) - (genamt+SlackAllowance), (int)(nctx*0.45)), ShortfallThreshold-SlackAllowance);

    auto curr_ctx_without_memory = std::vector<int>(current_context_tokens.begin() + trimstart, current_context_tokens.end());
    auto new_ctx_without_memory = std::vector<int>(new_context_tokens.begin() + trimstart, new_context_tokens.end());

    auto shared = LongestCommonSubseq(curr_ctx_without_memory, new_ctx_without_memory);

    if (shared.size() > LCSTokThreshold && ArrStartWith(new_ctx_without_memory, shared)) // enough tokens in common
    {
        int found = ArrFindIndexOf(current_context_tokens,shared);
        if(found>=0 && found > trimstart)
        {

            //extract the unwanted tokens out from context and KV
            int diff = found - trimstart;
            llama_kv_cache_seq_rm(ctx, 0, trimstart, trimstart + diff);
            llama_kv_cache_seq_add(ctx, 0, trimstart + diff, -1, -diff);
            if(draft_ctx)
            {
                llama_kv_cache_seq_rm(draft_ctx, 0, trimstart, trimstart + diff);
                llama_kv_cache_seq_add(draft_ctx, 0, trimstart + diff, -1, -diff);
            }

            for (size_t i = trimstart + diff; i < current_context_tokens.size() - 1; i++)
            {
                current_context_tokens[i - diff] = current_context_tokens[i];
            }

            printf("\n[Context Shifting: Erased %d tokens at position %d]", diff, trimstart + 1);

            current_context_tokens.resize(current_context_tokens.size() - diff);
        }
    }

}

static int GetBatchSize(int desiredBlasBatchSize,FileFormat in_file_format)
{
    //check if approved to use BLAS
    bool approved_format = !(file_format == FileFormat::BADFORMAT ||
                            file_format == FileFormat::GPT2_1 ||
                            file_format == FileFormat::GPTJ_1 ||
                            file_format == FileFormat::GPTJ_2 ||
                            file_format == FileFormat::RWKV_1 ||
                            file_format==FileFormat::RWKV_2);
    if(!approved_format || desiredBlasBatchSize<=0)
    {
        desiredBlasBatchSize = 16;
    }
    if (file_format != FileFormat::GGML && file_format != FileFormat::GGHF && file_format != FileFormat::GGJT && file_format != FileFormat::GGJT_2 && file_format != FileFormat::GGJT_3 && file_format != FileFormat::GGUF_GENERIC)
    {
        desiredBlasBatchSize = (desiredBlasBatchSize > 256 ? 256 : desiredBlasBatchSize);
    }
    if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
    {
        desiredBlasBatchSize = 1;
    }
    return desiredBlasBatchSize;
}

//this function applies automatic scaling to rope freq base when the desired context exceeds trained context
static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_train, int n_ctx_desired, GGUFArch model_arch)
{
    if(n_ctx_desired <= n_ctx_train || n_ctx_desired <= 2048)
    {
        return original_rope_base;
    }
	else
	{
        float ctx_multiplier = (model_arch==GGUFArch::ARCH_SOLAR?8.0f:1.0f);
        float chi_ctx_train_value = (n_ctx_train * ctx_multiplier) / 6.28318;
        float chi_ctx_value = (n_ctx_desired * ctx_multiplier) / 6.28318;
        float gradient_ai_rope_freq_base_value = powf(original_rope_base, log10f(chi_ctx_value) / log10f(chi_ctx_train_value));

	    if(model_arch==GGUFArch::ARCH_SOLAR)
        {
            float extended_rope_positive_offset_value = 1 + ((log10f(chi_ctx_value) - log10f(chi_ctx_train_value)) / ((log10f(chi_ctx_value) * log10f(chi_ctx_train_value)) - (log10f(chi_ctx_value) + log10f(chi_ctx_train_value))));
            float rope_freq_base_with_positive_offset = gradient_ai_rope_freq_base_value * extended_rope_positive_offset_value;
            return rope_freq_base_with_positive_offset;
        }
        else
        {
	        return gradient_ai_rope_freq_base_value;
        }
    }
}

ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format, FileFormatExtraMeta in_file_format_meta)
{
    is_quiet = inputs.quiet;
    ggml_time_init();
    kcpp_data = new kcpp_params(); //allocate on heap to avoid linux segfault. yes this leaks memory.

    file_format = in_file_format;
    file_format_meta = in_file_format_meta;
    kcpp_data->n_threads = inputs.threads;
    kcpp_data->n_blasthreads = inputs.blasthreads;
    bool isGguf = (file_format == FileFormat::GGUF_GENERIC);
    kcpp_data->n_batch = GetBatchSize(inputs.blasbatchsize, in_file_format);
    kcpp_data->n_ubatch = kcpp_data->n_batch;
    kcpp_data->flash_attn = inputs.flash_attention;
    kcpp_data->model_filename = inputs.model_filename;
    kcpp_data->use_smartcontext = inputs.use_smartcontext;
    kcpp_data->use_contextshift = inputs.use_contextshift;
    kcpp_data->use_fastforward = inputs.use_fastforward;
    debugmode = inputs.debugmode;
    draft_ctx = nullptr;

    auto clamped_max_context_length = inputs.max_context_length;

    if(clamped_max_context_length>16384 &&
    file_format != FileFormat::GGUF_GENERIC)
    {
        printf("Warning: Only GGUF models can use max context above 16k. Max context lowered to 16k.\n");
        clamped_max_context_length = 16384;
    }

    kcpp_data->n_ctx = clamped_max_context_length;
    max_context_limit_at_load = clamped_max_context_length;

    neox_ctx_v2.hparams.n_ctx  = neox_ctx_v3.hparams.n_ctx
    = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx
    = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx = gpt2_ctx_v3.hparams.n_ctx
    = mpt_ctx_v3.hparams.n_ctx = kcpp_data->n_ctx;

    vision_max_res = inputs.visionmaxres;

    //determine rope scaling params
    float rope_freq_scale = 1.0f;
    float rope_freq_base = 10000.0f;
    bool overwriteRope = false;
    if(inputs.rope_freq_scale>0.0f)
    {
        rope_freq_scale = inputs.rope_freq_scale;
        rope_freq_base = inputs.rope_freq_base;
        overwriteRope = true;
        printf("Using Custom RoPE scaling (scale:%.3f, base:%.1f).\n",rope_freq_scale,rope_freq_base);
    }
    else
    {
        //Set freq base for all, including non GGUF. If we are using GGUF, this will be overwritten with more accurate values later.
        rope_freq_base = CalcGradientAIRopeFreqBase(10000.0f,2048,kcpp_data->n_ctx, GGUFArch::ARCH_DEFAULT);
        if(file_format==FileFormat::GGUF_GENERIC)
        {
            printf("Using automatic RoPE scaling for GGUF. If the model has custom RoPE settings, they'll be used directly instead!\n");
        }
        else
        {
            printf("Using Automatic RoPE scaling, Pre-GGUF (scale:%.3f, base:%.1f).\n",rope_freq_scale, rope_freq_base);
        }
    }
    gptj_ctx_v3.hparams.rope_freq_scale = neox_ctx_v3.hparams.rope_freq_scale = rope_freq_scale;
    gptj_ctx_v3.hparams.rope_freq_base = neox_ctx_v3.hparams.rope_freq_base = rope_freq_base;

    //this is used for the mem_per_token eval, blas needs more RAM
    bool v3_use_scratch = ggml_v3_cpu_has_gpublas();

    int cu_parseinfo_maindevice = inputs.cublas_info<=0?0:inputs.cublas_info;

    printf("System Info: %s\n", kcpp_print_system_info());
    #if defined(GGML_USE_CUDA)
    if(file_format!=FileFormat::GGUF_GENERIC)
    {
        if(ggml_v3_cpu_has_gpublas() && cu_parseinfo_maindevice>0)
        {
            printf("CUBLAS v3: Set main device to %d\n",cu_parseinfo_maindevice);
            ggml_v3_cuda_set_main_device(cu_parseinfo_maindevice);
        }
    }

    #endif
    SetQuantsUnshuffled(false);
    if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
    {
        //newer format has bit unshuffling
        SetQuantsUnshuffled(file_format == FileFormat::GGJT_2);
        llama_v2_context_params llama_ctx_params_v2 = llama_v2_context_default_params();
        llama_ctx_params_v2.n_ctx = clamped_max_context_length;
        llama_ctx_params_v2.seed = -1;
        llama_ctx_params_v2.f16_kv = true;
        llama_ctx_params_v2.logits_all = false;
        llama_ctx_params_v2.use_mmap = inputs.use_mmap;
        llama_ctx_params_v2.use_mlock = inputs.use_mlock;
        llama_ctx_params_v2.n_gpu_layers = inputs.gpulayers;

        llama_ctx_v2 = llama_v2_init_from_file(kcpp_data->model_filename.c_str(), llama_ctx_params_v2);

        if (llama_ctx_v2 == NULL)
        {
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, kcpp_data->model_filename.c_str());
            return ModelLoadResult::FAIL;
        }

        printf("\n---\nWarning: Your model may be an OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format);

        if (lora_filename != "")
        {
            printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());

            const char * lora_base_arg = NULL;
            if (lora_base != "") {
                printf("Using LORA base model: %s\n", lora_base.c_str());
                lora_base_arg = lora_base.c_str();
            }

            int err = llama_v2_apply_lora_from_file(llama_ctx_v2,
                                                 lora_filename.c_str(),
                                                 lora_base_arg,
                                                 kcpp_data->n_threads);
            if (err != 0)
            {
                fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
                return ModelLoadResult::FAIL;
            }
        }

        n_vocab = llama_v2_n_vocab(llama_ctx_v2);

        //determine mem per token
        const std::vector<int> tmp = {1, 2, 3, 4};
        llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, kcpp_data->n_threads);
        return ModelLoadResult::SUCCESS;
    }
    else if(file_format == FileFormat::GGJT_3)
    {
        llama_v3_context_params llama_ctx_params = llama_v3_context_default_params();
        llama_ctx_params.n_ctx = clamped_max_context_length;
        llama_ctx_params.seed = -1;
        llama_ctx_params.f16_kv = true;
        llama_ctx_params.low_vram = inputs.low_vram;
        llama_ctx_params.mul_mat_q = inputs.use_mmq;
        llama_ctx_params.logits_all = false;
        llama_ctx_params.use_mmap = inputs.use_mmap;
        llama_ctx_params.use_mlock = inputs.use_mlock;
        llama_ctx_params.n_gpu_layers = inputs.gpulayers;
        llama_ctx_params.main_gpu = cu_parseinfo_maindevice;
        llama_ctx_params.rope_freq_base = rope_freq_base;
        llama_ctx_params.rope_freq_scale = rope_freq_scale;
        llama_ctx_params.n_batch = kcpp_data->n_batch;

        #if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
        bool ts_all_zero = true;
        for (int i = 0; i < tensor_split_max; ++i) {
            if (inputs.tensor_split[i] != 0.0f) {
                ts_all_zero = false;
                break;
            }
        }
        if(!ts_all_zero)
        {
            printf("\nApplying Tensor Split...\n");
            llama_ctx_params.tensor_split = inputs.tensor_split;
        }
        #endif

        llama_ctx_v3 = llama_v3_init_from_file(kcpp_data->model_filename.c_str(), llama_ctx_params);

        if (llama_ctx_v3 == NULL)
        {
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, kcpp_data->model_filename.c_str());
            return ModelLoadResult::FAIL;
        }
        if (lora_filename != "")
        {
            printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());

            const char * lora_base_arg = NULL;
            if (lora_base != "") {
                printf("Using LORA base model: %s\n", lora_base.c_str());
                lora_base_arg = lora_base.c_str();
            }

            int err = llama_v3_apply_lora_from_file(llama_ctx_v3,
                                                 lora_filename.c_str(),
                                                 lora_base_arg,
                                                 kcpp_data->n_threads);
            if (err != 0)
            {
                fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
                return ModelLoadResult::FAIL;
            }
        }

        n_vocab = llama_v3_n_vocab(llama_ctx_v3);

        //determine mem per token
        const std::vector<int> tmp = {1, 2, 3, 4};
        auto er = llama_v3_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, kcpp_data->n_threads);
        if(er!=0)
        {
            printf("\nLLAMA EVAL returned nonzero!\n");
        }
        return ModelLoadResult::SUCCESS;
    }
    else if(file_format==FileFormat::GGUF_GENERIC)
    {
        llama_backend_init();

        llama_model_params model_params = llama_model_default_params();
        llama_context_params llama_ctx_params = llama_context_default_params();
        llama_ctx_params.n_ctx = clamped_max_context_length;
        if(kcpp_data->use_contextshift)
        {
           llama_ctx_params.n_ctx += extra_context_handle_fragmentation;
        }

        llama_ctx_params.offload_kqv = !inputs.low_vram;
        llama_ctx_params.logits_all = false;
        model_params.use_mmap = inputs.use_mmap;
        model_params.use_mlock = inputs.use_mlock;
        model_params.n_gpu_layers = inputs.gpulayers;

        #if defined(GGML_USE_CLBLAST)
        if(file_format==FileFormat::GGUF_GENERIC && model_params.n_gpu_layers>0)
        {
            if(file_format_meta.model_architecture == GGUFArch::ARCH_FALCON)
            {
                printf("\nOpenCL does not support GPU Layer offloading for this model architecture! GPU Offload has been disabled.\n");
                model_params.n_gpu_layers = 0;
            }
            else if(file_format_meta.n_expert_count>1)
            {
                printf("\nOpenCL cannot use regular GPU offloading for this model architecture. A fallback GPU offloader will be used with degraded performance.\n");

            }
        }
        #endif
        #if defined(GGML_USE_CUDA)
        if(cu_parseinfo_maindevice>0)
        {
            printf("CUBLAS: Set main device to %d\n",cu_parseinfo_maindevice);
        }
        ggml_cuda_set_mul_mat_q(inputs.use_mmq);
        #endif
        if((file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2 || file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL) && !kcpp_data->flash_attn)
        {
            printf("Warning, you are running Qwen2 without Flash Attention. If you observe incoherent output, try enabling it.\n");
        }
        if(file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL)
        {
            printf("Qwen2VL detected! Mrope will be used, and context shift will be disabled!\n");
            kcpp_data->use_contextshift = false;
        }
        model_params.main_gpu = cu_parseinfo_maindevice;

        #if defined(GGML_USE_CUDA)
        model_params.split_mode = (inputs.use_rowsplit?llama_split_mode::LLAMA_SPLIT_MODE_ROW:llama_split_mode::LLAMA_SPLIT_MODE_LAYER);
        #else
        model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER;
        #endif

        llama_ctx_params.n_batch = kcpp_data->n_batch;
        llama_ctx_params.n_ubatch = kcpp_data->n_ubatch;
        llama_ctx_params.n_threads = kcpp_data->n_threads;
        llama_ctx_params.n_threads_batch = kcpp_data->n_blasthreads;

        #if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
        bool ts_all_zero = true;
        for (int i = 0; i < tensor_split_max; ++i) {
            if (inputs.tensor_split[i] != 0.0f) {
                ts_all_zero = false;
                break;
            }
        }
        if(!ts_all_zero)
        {
            printf("\nApplying Tensor Split...\n");
            model_params.tensor_split = inputs.tensor_split;
        }
        #endif

        //compat for old falcon
        if(file_format_meta.fileversion==1)
        {
            //apply compat fix
            printf("\nUsing older tokenizer for GGUFv1...");
            OldBPETokenizerMode = true;
        }

        std::vector<llama_model_kv_override> kvos; //ensure it keeps in scope until model is created
        if(inputs.moe_experts>0)
        {
            printf("\nOverriding number of experts to %d\n",inputs.moe_experts);
            llama_model_kv_override kvo;
            std::string moekeystr = "llama";
            if(file_format_meta.model_architecture_str!="")
            {
                moekeystr = file_format_meta.model_architecture_str;
            }
            moekeystr += ".expert_used_count";

            const char * moekey = moekeystr.c_str();
            std::strncpy(kvo.key, moekey, sizeof(kvo.key) - 1);
            kvo.key[sizeof(kvo.key) - 1] = '\0'; // Ensure null termination
            kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
            kvo.val_i64 = inputs.moe_experts;
            kvos.push_back(kvo);
            model_params.kv_overrides = kvos.data();
        }
        llama_model * llamamodel = llama_model_load_from_file(kcpp_data->model_filename.c_str(), model_params);

        if(overwriteRope)
        {
            llama_ctx_params.rope_freq_base = rope_freq_base;
            llama_ctx_params.rope_freq_scale = rope_freq_scale;
        }
        else
        {
            //if the model modifes rope in any way, or uses yarn, use the model values. Otherwise, use our automatic ones
            //special exception for llama, which uses auto scale
            if((llamamodel->hparams.rope_freq_base_train!=10000.0f && llamamodel->hparams.rope_freq_base_train!=500000.0f) ||
            llamamodel->hparams.rope_freq_scale_train!=1.0f ||
            llamamodel->hparams.rope_scaling_type_train==2)
            {
                printf("Automatic RoPE Scaling: Using model internal value.\n");
            }
            else
            {
				//Calculate rope_freq_base using the gradientAI formula, solar requires ctx *8 for correct scaling
                rope_freq_base = CalcGradientAIRopeFreqBase(llamamodel->hparams.rope_freq_base_train, file_format_meta.n_ctx_train, kcpp_data->n_ctx, file_format_meta.model_architecture);
                llama_ctx_params.rope_freq_base = rope_freq_base;
                llama_ctx_params.rope_freq_scale = rope_freq_scale;
                printf("Automatic RoPE Scaling: Using (scale:%.3f, base:%.1f).\n", rope_freq_scale, rope_freq_base);
            }
        }

        if(file_format_meta.model_architecture==GGUFArch::ARCH_RWKV)
        {
            printf("\nRWKV6 Overriding EOS and BOS IDs to 0\n");
            llamamodel->vocab.set_eos_bos(0,0);
        }

        llama_ctx_params.flash_attn = kcpp_data->flash_attn;
        llama_ctx_params.type_k = (inputs.quant_k>1?GGML_TYPE_Q4_0:(inputs.quant_k==1?GGML_TYPE_Q8_0:GGML_TYPE_F16));
        llama_ctx_params.type_v = (inputs.quant_v>1?GGML_TYPE_Q4_0:(inputs.quant_v==1?GGML_TYPE_Q8_0:GGML_TYPE_F16));
        llama_ctx_v4 = llama_new_context_with_model(llamamodel, llama_ctx_params);

        if (llama_ctx_v4 == NULL)
        {
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, kcpp_data->model_filename.c_str());
            return ModelLoadResult::FAIL;
        }
        if (lora_filename != "")
        {
            printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());

            const char * lora_base_arg = NULL;
            if (lora_base != "") {
                printf("Using LORA base model: %s\n", lora_base.c_str());
                lora_base_arg = lora_base.c_str();
            }

            auto adapter = llama_adapter_lora_init(llamamodel, lora_filename.c_str());
            if (adapter == nullptr) {
                fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
                return ModelLoadResult::FAIL;
            }
            llama_set_adapter_lora(llama_ctx_v4, adapter, 1.0f);
        }

        if(mmproj_filename != "" && file_format==FileFormat::GGUF_GENERIC)
        {
            printf("\nAttempting to apply Multimodal Projector: %s\n", mmproj_filename.c_str());
            #if defined(GGML_USE_METAL)
            if(file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL)
            {
                set_clip_uses_gpu(false);
                printf("Clip will use CPU for this model!\n");
            }
            #endif
            clp_ctx = clip_model_load(mmproj_filename.c_str(), /*verbosity=*/ 1);
            if(clp_ctx == nullptr) {
                fprintf(stderr, "%s: error: failed to load mmproj model!\n", __func__);
                return ModelLoadResult::FAIL;
            }
            const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
            const int n_embd_llm  = llama_n_embd(llamamodel);
            if (n_embd_clip != n_embd_llm) {
                fprintf(stderr, "%s: mmproj embedding mismatch (%d and %d)! Make sure you use the correct mmproj file!\n", __func__,n_embd_clip, n_embd_llm);
                return ModelLoadResult::FAIL;
            }
            clp_img_data = clip_image_u8_init();
        }

        const llama_vocab * tmpvocab = llama_model_get_vocab(llamamodel);
        n_vocab = llama_vocab_n_tokens(tmpvocab);

        if(draftmodel_filename !="" && file_format==FileFormat::GGUF_GENERIC)
        {
            if(llama_model_is_recurrent(llamamodel))
            {
                printf("Error: Speculative decoding cannot be used with Recurrent models!\n");
            }
            else if(clp_ctx!=nullptr)
            {
                printf("Error: Speculative decoding cannot be used with multimodal vision projectors!\n");
            }
            else
            {
                printf("\nAttempting to load draft model for speculative decoding. It will be fully offloaded if possible. Vocab must match the main model.\n");
                speculative_chunk_amt = inputs.draft_amount;
                speculative_decoding_setup(draftmodel_filename, model_params, llama_ctx_params, n_vocab, inputs.draft_gpusplit, inputs.draft_gpulayers);
            }
        }

        //determine mem per token
        std::vector<int> tmp = {1, 2, 3, 4};
        llama_kv_cache_clear(llama_ctx_v4);
        auto er = llama_decode(llama_ctx_v4, llama_batch_get_one(tmp.data(), tmp.size()));
        if(er!=0)
        {
            printf("\nLLAMA EVAL returned nonzero: %d\n",er);
        }
        return ModelLoadResult::SUCCESS;
    }
    else if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
    {
        //start loading the models first
        bool useWorldTokenizer = false;
        if (file_format == FileFormat::RWKV_1)
        {
            rwkv_ctx_v2 = rwkv_v2_init_from_file(kcpp_data->model_filename.c_str(), kcpp_data->n_threads);
        }
        else //rwkv_2
        {
            rwkv_ctx_v3 = rwkv_init_from_file(kcpp_data->model_filename.c_str(), kcpp_data->n_threads);

            if(inputs.gpulayers>0)
            {
                rwkv_gpu_offload_layers(rwkv_ctx_v3,inputs.gpulayers);
            }

            const struct rwkv_file_header & header = rwkv_ctx_v3->instance->model.header;
            const size_t n_vocab = header.n_vocab;
            printf("\nDetected Vocab: %zu",n_vocab);
            if(n_vocab>60000)
            {
                printf("\nUsing WORLD TOKENIZER");
                useWorldTokenizer = true;
            }
        }

        std::string word;
        if(useWorldTokenizer)
        {
            read_rwkv_world_vocab();
        }
        else
        {
            read_rwkv_vocab();
        }

        int vocabsiz = rwkv_vocab.size();
        for (int i = 0; i < vocabsiz; i++)
        {
            uint32_t len;
            word = rwkv_vocab[i];
            vocab.token_to_id[word] = i;
            vocab.id_to_token[i] = word;
        }
        printf("\nRWKV Vocab: %u\n", vocabsiz);
        logits.resize(vocabsiz);

        n_vocab = vocab.id_to_token.size(); //handled seperately

        if (file_format == FileFormat::RWKV_1)
        {

            //setup buffers for rwkv state
            auto padding = 512u;
            auto statebufsiz = rwkv_v2_get_state_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding;
            auto logitbufsiz = rwkv_v2_get_logits_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding;

            printf("\nRWKV old Init: State Buffer:%lu, Logit Buffer:%lu\n", statebufsiz, logitbufsiz);
            rwkv_ctx_v2->state_out = (float *)malloc(statebufsiz);
            rwkv_ctx_v2->logits_out = (float *)malloc(logitbufsiz);
            rwkv_ctx_v2->state_in = nullptr;

            bool testeval = rwkv_v2_eval(rwkv_ctx_v2, 0, rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out);
            if (!testeval)
            {
                printf("\nError: RWKV old Init Eval Failed!\n");
            }

            memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float) * vocabsiz);

            if (rwkv_ctx_v2 == NULL)
            {
                return ModelLoadResult::FAIL;
            }
            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //setup buffers for rwkv state
            auto padding = 512u;
            auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v3) * sizeof(float) + padding;
            auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v3) * sizeof(float) + padding;

            printf("\nRWKV Init: State Buffer:%lu, Logit Buffer:%lu\n", statebufsiz, logitbufsiz);
            rwkv_ctx_v3->state_out = (float *)malloc(statebufsiz);
            rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz);
            rwkv_ctx_v3->state_in = nullptr;

            bool testeval = rwkv_eval(rwkv_ctx_v3, kcpp_data->n_threads, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
            if (!testeval)
            {
                printf("\nError: RWKV Init Eval Failed!\n");
            }

            memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * vocabsiz);

            if (rwkv_ctx_v3 == NULL)
            {
                return ModelLoadResult::FAIL;
            }
            return ModelLoadResult::SUCCESS;
        }
    }
    else if (file_format == FileFormat::GPT2_1)
    {
        ModelLoadResult res = legacy_gpt2_model_load(kcpp_data->model_filename, gpt2_ctx_v1, vocab, file_format);
        if(res==ModelLoadResult::FAIL)
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
            return res;
        }
        else if(res==ModelLoadResult::RETRY_LOAD)
        {
            printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
            return res;
        }

        n_vocab = gpt2_ctx_v1.hparams.n_vocab;

         // determine the required inference memory per token:
        legacy_gpt2_eval(gpt2_ctx_v1, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
        return ModelLoadResult::SUCCESS;
    }
    else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4)
    {
        if(file_format==FileFormat::GPT2_4)
        {
            ModelLoadResult res = gpt2_model_load(kcpp_data->model_filename, gpt2_ctx_v3, vocab, file_format, inputs.gpulayers);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
                return res;
            }

            n_vocab = gpt2_ctx_v3.hparams.n_vocab;

            // determine the required inference memory per token:
            gpt2_eval(gpt2_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //newer format has bit unshuffling
            SetQuantsUnshuffled(file_format == FileFormat::GPT2_3);

            ModelLoadResult res = gpt2_v2_model_load(kcpp_data->model_filename, gpt2_ctx_v2, vocab, file_format, inputs.gpulayers);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
                return res;
            }

            n_vocab = gpt2_ctx_v2.hparams.n_vocab;

            // determine the required inference memory per token:
            gpt2_v2_eval(gpt2_ctx_v2, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
            return ModelLoadResult::SUCCESS;
        }
    }
    else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
    {
        ModelLoadResult res = legacy_gptj_model_load(kcpp_data->model_filename, gptj_ctx_v1, vocab, file_format);
        if(res==ModelLoadResult::FAIL)
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
            return res;
        }
        else if(res==ModelLoadResult::RETRY_LOAD)
        {
            printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
            return res;
        }

        n_vocab = gptj_ctx_v1.hparams.n_vocab;

         // determine the required inference memory per token:
        legacy_gptj_eval(gptj_ctx_v1, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);

        //if the logits are NAN or duplicated, it means the model is incompatible
        if(logits.size()>0 && IsNanCheck(logits[0]))
        {
            printf("\nBad Logits detected! Retrying GPT-J model loading...");
            ggml_v1_free(gptj_ctx_v1.ctx);
            return ModelLoadResult::RETRY_LOAD;
        }

        return ModelLoadResult::SUCCESS;
    }
    else if(file_format == FileFormat::GPTJ_3 || file_format == FileFormat::GPTJ_4 || file_format == FileFormat::GPTJ_5)
    {
        if(file_format == FileFormat::GPTJ_5)
        {
            ModelLoadResult loadresult = gptj_model_load(kcpp_data->model_filename, gptj_ctx_v3, vocab, inputs.gpulayers);
            if (loadresult == ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
                return loadresult;
            }
            else if (loadresult == ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
                return loadresult;
            }

            n_vocab = gptj_ctx_v3.hparams.n_vocab;

            // determine the required inference memory per token:
            gptj_eval(gptj_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);

            //if the logits are NAN or duplicated, it means the model is incompatible
            std::vector<float> oldlogits(logits);

            //this is another hack because they change the library - we run the eval through the model
            //twice and compare logits. if they give the same logits for different inputs, model is broken
            gptj_eval(gptj_ctx_v3, kcpp_data->n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token, v3_use_scratch);

            if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
            {
                printf("\nBad Logits detected! Retrying GPT-J model loading...");
                ggml_v3_free(gptj_ctx_v3.ctx);
                return ModelLoadResult::RETRY_LOAD;
            }

            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //newer format has bit unshuffling
            SetQuantsUnshuffled(file_format == FileFormat::GPTJ_4);

            ModelLoadResult loadresult = gptj_v2_model_load(kcpp_data->model_filename, gptj_ctx_v2, vocab, inputs.gpulayers);
            if (loadresult == ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
                return loadresult;
            }
            else if (loadresult == ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
                return loadresult;
            }

            n_vocab = gptj_ctx_v2.hparams.n_vocab;

            // determine the required inference memory per token:
            gptj_v2_eval(gptj_ctx_v2, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

            //if the logits are NAN or duplicated, it means the model is incompatible
            std::vector<float> oldlogits(logits);

            //this is another hack because they change the library - we run the eval through the model
            //twice and compare logits. if they give the same logits for different inputs, model is broken
            gptj_v2_eval(gptj_ctx_v2, kcpp_data->n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);

            if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
            {
                printf("\nBad Logits detected! Retrying GPT-J model loading...");
                ggml_v2_free(gptj_ctx_v2.ctx);
                return ModelLoadResult::RETRY_LOAD;
            }

            return ModelLoadResult::SUCCESS;
        }
    }
    else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5|| file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
    {
        if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
        {
            ModelLoadResult res = gpt_neox_model_load(kcpp_data->model_filename, neox_ctx_v3, vocab, file_format, inputs.gpulayers);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
                return res;
            }

            n_vocab = neox_ctx_v3.hparams.n_vocab;

            // determine the required inference memory per token:
            gpt_neox_eval(neox_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);

            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //newer format has bit unshuffling
            SetQuantsUnshuffled(file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5);

            ModelLoadResult res = gpt_neox_v2_model_load(kcpp_data->model_filename, neox_ctx_v2, vocab, file_format);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
                return res;
            }

            n_vocab = neox_ctx_v2.hparams.n_vocab;

            // determine the required inference memory per token:
            gpt_neox_v2_eval(neox_ctx_v2, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

            if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0]))
            {
                //run the black magic eval to determine if it's redpajama. VERY UGLY HACK!
                std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7");
                auto orig_par_res = neox_ctx_v2.hparams.par_res;
                neox_ctx_v2.hparams.par_res = 0; //test with residual false
                gpt_neox_v2_eval(neox_ctx_v2, kcpp_data->n_threads, 0, test_embd, logits, mem_per_token);
                neox_ctx_v2.hparams.par_res = orig_par_res;
                int topid = std::max_element(logits.begin(),logits.end())-logits.begin();
                std::string predicted = vocab.id_to_token[topid].c_str();
                auto findresult = predicted.find("8");
                if(findresult != std::string::npos && findresult<2)
                {
                    printf("\n---\nOld RedPajama NeoX Detected! Switching to new format! (use_parallel_residual=False)\n");
                    ggml_v2_free(neox_ctx_v2.ctx);
                    return ModelLoadResult::RETRY_LOAD;
                }
            }

            return ModelLoadResult::SUCCESS;
        }

    }
    else if(file_format==FileFormat::MPT_1)
    {
        bool res = mpt_model_load(kcpp_data->model_filename, mpt_ctx_v3, vocab, inputs.gpulayers);
        if(res==false)
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
            return ModelLoadResult::FAIL;
        }

        n_vocab = mpt_ctx_v3.hparams.n_vocab;

        // determine the required inference memory per token:
        mpt_eval(mpt_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token, v3_use_scratch);
        return ModelLoadResult::SUCCESS;
    }
    else
    {
        printf("\nUnknown Model, cannot load.\n");
        return ModelLoadResult::FAIL;
    }

}

bool gpttype_generate_abort()
{
    if(kcpp_data==nullptr)
    {
        printf("\nWarning: KCPP text generation not initialized!\n");
    }
    early_abort = true;
    return true;
}

std::string gpttype_get_chat_template()
{
    if(kcpp_data==nullptr)
    {
        printf("\nWarning: KCPP text generation not initialized!\n");
        return "";
    }
    if(file_format!=FileFormat::GGUF_GENERIC || !llama_ctx_v4)
    {
        return "";
    }
    // copied from examples/server/utils.hpp::llama_get_chat_template
    std::string template_key = "tokenizer.chat_template";
    // call with NULL buffer to get the total size of the string
    int32_t res = llama_model_meta_val_str(&llama_ctx_v4->model, template_key.c_str(), NULL, 0);
    if (res < 0) {
        return "";
    }

    std::vector<char> model_template(res + 1, 0);
    llama_model_meta_val_str(&llama_ctx_v4->model, template_key.c_str(), model_template.data(), model_template.size());
    return std::string(model_template.data(), model_template.size() - 1);
}

std::vector<int> gpttype_get_token_arr(const std::string & input, bool addbos)
{
    std::vector<int> toks;
    if(kcpp_data==nullptr)
    {
        printf("\nWarning: KCPP text generation not initialized!\n");
        return toks;
    }
    if(debugmode==1 && !is_quiet)
    {
        printf("\nFileFormat: %d, Tokenizing: %s",file_format ,input.c_str());
    }
    TokenizeString(input, toks, file_format,addbos);
    int tokcount = toks.size();
    if(debugmode==1 && !is_quiet)
    {
        printf("\nTokens Counted: %d\n",tokcount);
    }
    return toks;
}

std::string gpttype_detokenize(const std::vector<int> & inputids, bool render_special)
{
    if(kcpp_data==nullptr)
    {
        printf("\nWarning: KCPP text generation not initialized!\n");
        return "";
    }

    std::string output = "";
    for (auto eid : inputids)
    {
        if(eid<0 || eid>=n_vocab)
        {
            continue;
        }
        std::string tokenizedstr = FileFormatTokenizeID(eid, file_format, render_special);
        output += tokenizedstr;
    }
    return output;
}

const std::string & gpttype_get_pending_output()
{
    if(kcpp_data==nullptr)
    {
        printf("\nWarning: KCPP text generation not initialized!\n");
        return concat_output_reader_copy_poll;
    }
    concat_output_mtx.lock();
    concat_output_reader_copy_poll = concat_output;
    concat_output_mtx.unlock();
    return concat_output_reader_copy_poll;
}

const std::vector<TopPicksData> gpttype_get_top_picks_data()
{
    return top_picks_history;
}

bool VecContainsIntVal(const std::vector<int> & vec, const int val)
{
    for (const auto &matched : vec)
    {
        if (val == matched)
        {
            return true;
        }
    }
    return false;
}

int GetThreadsToUse(bool blasmode)
{
    if (blasmode)
    {
        #if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
            return kcpp_data->n_blasthreads;
        #else
            return std::min(kcpp_data->n_blasthreads, 4);
        #endif
    }
    return kcpp_data->n_threads;
}

//this function prepares the clip embds for llava. it's only needed when images change
static void PrepareLlavaEmbds(const int nctx, const std::vector<int> & llava_sep)
{
    if(clp_ctx!=nullptr && clp_img_data!=nullptr)
    {
        int sepsize = llava_sep.size();
        last_llava_mem.clear();

        for(int i=0;i<llava_images.size();++i)
        {
            std::string llava_image = llava_images[i].b64data;
            const std::vector<uint8_t> image_buffer = kcpp_base64_decode(llava_image);
            if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), clp_img_data, vision_max_res))
            {
                //failed to load image
                printf("\nError: Clip image %d failed to load!",i);
            }
            else
            {
                if(debugmode==1 && !is_quiet)
                {
                    printf("\nCreating clip image embed...");
                }
                llava_images[i].clp_image_tokens = 0;
                if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_data->n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) {
                    printf("\nError: Clip image %d failed to create embd!",i);
                }
                if(debugmode==1 && !is_quiet)
                {
                    printf("\nLLAVA Clip Embed %i used Tokens: %d",i,llava_images[i].clp_image_tokens);
                }
                if(llava_images[i].clp_image_tokens>0 && llava_images[i].clp_image_tokens < nctx)
                {
                    int tokcnt = (i==0?(llava_images[i].clp_image_tokens):(llava_images[i].clp_image_tokens+sepsize));
                    for(int n=0;n<tokcnt;++n)
                    {
                        last_llava_mem.push_back(current_llava_identifier);
                    }
                }
                else
                {
                    printf("\nWarning: LLAVA Image excluded - Context size too low or not enough clip tokens!\n");
                }
            }
        }
    }
}

generation_outputs gpttype_generate(const generation_inputs inputs)
{
    generation_outputs output;

    if(kcpp_data==nullptr)
    {
        printf("\nWarning: KCPP text generation not initialized!\n");
        output.text = nullptr;
        output.status = 0;
        output.prompt_tokens = output.completion_tokens = 0;
        output.stopreason = stop_reason::INVALID;
        generation_finished = true;
        return output;
    }

    if(debugmode==1 && file_format == FileFormat::GGUF_GENERIC)
    {
        llama_perf_context_reset(llama_ctx_v4);
    }

    generation_finished = false; // Set current generation status
    generated_tokens.clear(); // New Generation, new tokens
    delayed_generated_tokens.clear();

    concat_output_mtx.lock();
    concat_output = "";
    concat_output_reader_copy_poll = "";
    concat_output_reader_copy_res = "";
    concat_output_mtx.unlock();
    last_stop_reason = stop_reason::OUT_OF_TOKENS;
    stop_sequence.clear();
    special_stop_sequence.clear();
    dry_repeat_count.clear();
    dry_sequence_breakers.clear();
    dry_max_token_repeat.clear();
    top_picks_history.clear();
    early_abort = false;

    double time0 = 0, time1 = 0, time2 = 0;
    timer_start();

    bool llava_images_changed = false;

    bool add_bos_token = true; //if set to false, mmproj handling breaks
    // if(file_format == FileFormat::GGUF_GENERIC && mmproj_filename == "")
    // {
    //     const llama_vocab * tmpvocab = llama_model_get_vocab(&(llama_ctx_v4->model));
    //     add_bos_token = llama_vocab_get_add_bos(tmpvocab);
    //     if(!add_bos_token && debugmode==1)
    //     {
    //          printf("\nBOS token prefix was disabled for this model.");
    //     }
    // }

    for(int x=0;x<inputs.stop_sequence_len;++x)
    {
        std::string stopper = inputs.stop_sequence[x];
        if(stopper!="")
        {
            stop_sequence.push_back(stopper);

            //if it tokenizes to a single token, AND it's a single non-printable special token, use that
            std::vector<int> tmp;
            TokenizeString(stopper, tmp, file_format, false);

            if(tmp.size()==1) //tokenizes to exactly 1 special token
            {
                int specialid = tmp[0];
                std::string tokenizedstr = FileFormatTokenizeID(specialid, file_format);
                if(tokenizedstr=="") //must NOT have a text representation
                {
                    special_stop_sequence.push_back(specialid);
                }
            }
        }
    }

    //handle custom token bans and antislop phrase banning
    banned_phrases.clear();
    delayed_generated_tokens_limit = 0;
    antislop_banned_token_ids.clear();
    banned_tokens.clear();
    for(int x=0;x<inputs.banned_tokens_len;++x)
    {
        std::string word = inputs.banned_tokens[x];
        word = toLowerCase(word);
        if(word!="")
        {
            std::vector<int> toks;
            TokenizeString(word, toks, file_format, false);
            int tokcount = toks.size();
            if(tokcount==0)
            {
                continue;
            }
            if(tokcount==1 && word.length()<2) //only use banned tokens for single characters
            {
                banned_tokens.push_back(word);
            }
            else
            {
                tokcount += 3; //add some extra buffer
                delayed_generated_tokens_limit = (tokcount > delayed_generated_tokens_limit ? tokcount : delayed_generated_tokens_limit);
                banned_phrases.push_back(word);
            }
        }
    }

    banned_token_ids.clear();
    if(banned_tokens.size()>0)
    {
        if(debugmode==1 && !is_quiet)
        {
            printf("\nBanning %zu single character sequences...",banned_tokens.size());
        }
        for(int v=0;v<n_vocab;++v)
        {
            std::string word = FileFormatTokenizeID(v,file_format, true);
            word = toLowerCase(word);
            for(int i=0;i<banned_tokens.size();++i)
            {
                if (word.find(banned_tokens[i]) != std::string::npos)
                {
                    banned_token_ids.push_back(v);
                    break;
                }
            }
        }
        if(debugmode==1 && !is_quiet)
        {
            printf("\nBanned a total of %zu individual tokens.\n",banned_token_ids.size());
        }
    }

    if(debugmode==1 && !is_quiet && banned_phrases.size()>0)
    {
        printf("\nBanned a total of %zu phrases, with max token count of %d.\n",banned_phrases.size(),delayed_generated_tokens_limit);
    }

    logit_biases.clear();
    for(int x=0;x<inputs.logit_biases_len;++x)
    {
        int32_t t_id = inputs.logit_biases[x].token_id;
        float bias = inputs.logit_biases[x].bias;
        if(t_id >= 0 && t_id < n_vocab && bias!=0)
        {
           logit_biases.push_back(inputs.logit_biases[x]);
        }
    }

    std::string addedmemory = inputs.memory;

    //clear previous run llava embd memory, just-in-time free
    for(int i=0;i<llava_images.size();++i)
    {
        if(llava_images[i].b64data!="" && llava_images[i].clp_img_embd!=nullptr)
        {
            free(llava_images[i].clp_img_embd);
            llava_images[i].clp_img_embd = nullptr;
        }
    }
    llava_images.clear();
    std::string new_llava_composite = "";
    for(int x=0;x<images_max;++x)
    {
        std::string item = inputs.images[x];
        if(item!="")
        {
            llava_image lv;
            lv.b64data = item;
            llava_images.push_back(lv);
            new_llava_composite += item;
        }
    }
    if(llava_composite_image_signature!=new_llava_composite)
    {
        //images have changed. swap identifiers to force reprocessing
        current_llava_identifier = (current_llava_identifier==LLAVA_TOKEN_IDENTIFIER_A?LLAVA_TOKEN_IDENTIFIER_B:LLAVA_TOKEN_IDENTIFIER_A);
        llava_composite_image_signature = new_llava_composite;
        if(debugmode==1 && !is_quiet)
        {
            printf("\nLLAVA images changed, existing cache invalidated");
        }
        llava_images_changed = true;
    }

    kcpp_data->prompt = inputs.prompt;
    kcpp_data->seed = inputs.seed;
    kcpp_data->n_predict = inputs.max_length;
    kcpp_data->top_k = inputs.top_k;
    kcpp_data->top_p = inputs.top_p;
    kcpp_data->min_p = inputs.min_p;
    kcpp_data->typical_p = inputs.typical_p;
    kcpp_data->tfs_z = inputs.tfs;
    kcpp_data->nsigma = inputs.nsigma;
    kcpp_data->temp = inputs.temperature;
    kcpp_data->repeat_last_n = inputs.rep_pen_range;
    kcpp_data->rep_pen_slope = inputs.rep_pen_slope;
    kcpp_data->repeat_penalty = inputs.rep_pen;
    kcpp_data->presence_penalty = inputs.presence_penalty;
    kcpp_data->mirostat = inputs.mirostat;
    kcpp_data->mirostat_eta = inputs.mirostat_eta;
    kcpp_data->mirostat_tau = inputs.mirostat_tau;
    kcpp_data->dry_multiplier = inputs.dry_multiplier;
    kcpp_data->dry_base = inputs.dry_base;
    kcpp_data->dry_allowed_length = inputs.dry_allowed_length;
    kcpp_data->dry_penalty_last_n = inputs.dry_penalty_last_n;
    kcpp_data->xtc_threshold = inputs.xtc_threshold;
    kcpp_data->xtc_probability = inputs.xtc_probability;
    kcpp_data->dynatemp_range = inputs.dynatemp_range;
    kcpp_data->dynatemp_exponent = inputs.dynatemp_exponent;
    kcpp_data->n_ctx = inputs.max_context_length;
    kcpp_data->smoothing_factor = inputs.smoothing_factor;

    // Parse dry sequence breakers / restart sequences
    kcpp_data->dry_sequence_breakers.clear();
    dry_sequence_breakers.clear();

    if (kcpp_data->dry_multiplier > 0)
    {
        for (int x = 0; x < inputs.dry_sequence_breakers_len; ++x)
        {
            std::string word = inputs.dry_sequence_breakers[x];
            if (word != "")
            {
                kcpp_data->dry_sequence_breakers.push_back(word);
            }
        }
        if (kcpp_data->dry_sequence_breakers.size() > 0)
        {
            // Restrict the maximum length of sequences used as sequence breakers. There are
            // very few use cases for a long sequence breaker, and limiting the max length
            // prevents a potential denial of service attack in which long repetitive sequence
            // breakers could result in slow DRY sampling with a suitably crafted context.
            const int MAX_CHAR_LEN = 40;
            const int MAX_SEQ_LEN = 20;

            if (debugmode == 1 && !is_quiet)
            {
                printf("\nProcessing %zu dry break strings...", kcpp_data->dry_sequence_breakers.size());
            }
            for (auto sequence_break : kcpp_data->dry_sequence_breakers)
            {
                if (sequence_break.size() > MAX_CHAR_LEN)
                {
                    sequence_break.resize(MAX_CHAR_LEN);
                }
                GetOverlappingTokenSequences(sequence_break, dry_sequence_breakers, MAX_SEQ_LEN);
            }
            if (debugmode == 1 && !is_quiet)
            {
                int trivial = 0, non_trivial = 0;
                for (const auto &seq : dry_sequence_breakers)
                {
                    if (seq.second.empty())
                    {
                        ++trivial;
                    }
                    else
                    {
                        ++non_trivial;
                    }
                }
                printf("\nFound a total of %zu restart heads, %d trivial, %d non-trivial.\n", dry_sequence_breakers.size(), trivial, non_trivial);
            }
        }
    }

    bool stream_sse = inputs.stream_sse;
    bool allow_regular_prints = (!is_quiet && debugmode!=-1);

    std::string grammarstr = inputs.grammar;
    bool grammar_retain_state = inputs.grammar_retain_state;
    if(grammar_retain_state)
    {
        if(grammarstr=="" || current_grammar!=grammarstr) //if grammar is identical, retain state
        {
            load_grammar(grammarstr);
        }
    }
    else
    {
        load_grammar(grammarstr);
    }
    current_grammar = grammarstr;


    if (kcpp_data->repeat_last_n < 1)
    {
        kcpp_data->repeat_last_n = 1;
    }
    if (kcpp_data->rep_pen_slope > 1 || kcpp_data->rep_pen_slope<=0)
    {
        kcpp_data->rep_pen_slope = 1;
    }
    if (kcpp_data->top_k < 1)
    {
        kcpp_data->top_k = n_vocab; // all tokens in the vocabulary should be considered if top k is disabled
    }
    if (kcpp_data->seed <= 0 || kcpp_data->seed==0xFFFFFFFF)
    {
        kcpp_data->seed = (((uint32_t)time(NULL)) % 1000000u);
        if(debugmode==1 && !is_quiet)
        {
            printf("\nUsing Seed: %d",kcpp_data->seed);
        }
    }

    // tokenize the prompt
    std::vector<int> embd_inp;
    std::vector<int> embd_inp_mem; //for storing added memory
    std::vector<int> llava_sep; //to separate between different llava images
    bool llava_embds_built = false;

    int32_t nctx = kcpp_data->n_ctx;

    TokenizeString(kcpp_data->prompt, embd_inp, file_format, add_bos_token);
    TokenizeString("\n\n", llava_sep, file_format, false);

    if(llava_composite_image_signature=="")
    {
        last_llava_mem.clear();
    }
    if(llava_images_changed)
    {
        PrepareLlavaEmbds(nctx, llava_sep);
        llava_embds_built = true;
    }

    if(addedmemory!="")
    {
        TokenizeString(addedmemory, embd_inp_mem, file_format, add_bos_token);
    }

    //truncate to front of the prompt if its too long
    if (embd_inp.size() + kcpp_data->n_predict > nctx)
    {
        //get bos token
        std::vector<int> bos;
        TokenizeString("", bos, file_format, add_bos_token);
        int offset = embd_inp.size() - nctx + kcpp_data->n_predict;
        embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end());
        //replace bos into front if exists
        if(bos.size()>0 && embd_inp.size()>0)
        {
            embd_inp[0] = bos[0];
        }
    }

    if(last_llava_mem.size()>0) //stick the llava mem before the added mem
    {
        if(last_llava_mem.size() + kcpp_data->n_predict + 4 > nctx)
        {
            printf("\nWarning: Too many LLaVA tokens, max context exceeded! They will be ignored!\n");
        }
        else
        {
            std::vector<int> bos;
            TokenizeString("", bos, file_format, add_bos_token);
            if(embd_inp_mem.size()>0) //remove existing bos if exists
            {
                if (bos.size()>0 && !embd_inp_mem.empty() && bos[0]==embd_inp_mem[0]) {
                    embd_inp_mem.erase(embd_inp_mem.begin());
                }
            }

            //append llava dummy tokens
            embd_inp_mem.insert(embd_inp_mem.begin(), last_llava_mem.begin(), last_llava_mem.end());
            if (bos.size() > 0 && embd_inp_mem.size() > 0)
            {
                embd_inp_mem.insert(embd_inp_mem.begin(), bos[0]);  //insert bos at front
            }

             //shorten memory if needed
            if (embd_inp_mem.size() + kcpp_data->n_predict + 4 > nctx)
            {
                int limit = nctx - (kcpp_data->n_predict + 4);
                if (embd_inp_mem.size() > limit) {
                    embd_inp_mem.resize(limit);
                }
            }
        }
    }

    //added special memory, overwrite if needed
    if(embd_inp_mem.size()>0)
    {
        //remove bos token from prompt, it'll be taken from memory
        std::vector<int> bos;
        TokenizeString("", bos, file_format, add_bos_token);
        if (bos.size()>0 && !embd_inp.empty() && bos[0]==embd_inp[0]) {
            embd_inp.erase(embd_inp.begin());
        }

        //shorten memory if needed
        if (embd_inp_mem.size() + kcpp_data->n_predict + 4 > nctx)
        {
            int offset = embd_inp_mem.size() - nctx + kcpp_data->n_predict + 4;
            embd_inp_mem = std::vector<int>(embd_inp_mem.begin() + offset, embd_inp_mem.end());
            //replace bos into front if exists
            if(bos.size()>0 && embd_inp_mem.size()>0)
            {
                embd_inp_mem[0] = bos[0];
            }
        }

        //shorten main prompt by trimming the front if needed
        int addmemtokens = embd_inp_mem.size();
        int totalsize = (addmemtokens + embd_inp.size() + kcpp_data->n_predict);
        if(totalsize > nctx)
        {
            int excess = totalsize - nctx;
            if (embd_inp.size() >= excess) {
                embd_inp.erase(embd_inp.begin(), embd_inp.begin() + excess);
            } else {
                embd_inp.clear();
            }
        }

        //stick memory to front of prompt
        embd_inp.insert(embd_inp.begin(), embd_inp_mem.begin(), embd_inp_mem.end());
    }

    //determine how much npast we have to rewind from the current state
    std::vector<gpt_vocab::id> embd;

    int last_n_size = kcpp_data->repeat_last_n;
    last_n_tokens.resize(last_n_size);

    std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
    n_past = 0;

    if (debugmode==1 && !is_quiet)
    {
        std::string outstr = "";
        printf("\n\n[Debug: Dump Raw Input Tokens, format: %d]\n", file_format);
        outstr += get_tok_vec_str(embd_inp);
        printf("%s\n", RemoveBell(outstr).c_str());
    }

    bool is_mamba = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture==GGUFArch::ARCH_MAMBA);
    bool is_rwkv_new = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture==GGUFArch::ARCH_RWKV);
    bool blank_prompt = (addedmemory=="" && kcpp_data->prompt=="");

    if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2 || is_mamba || is_rwkv_new)
    {
        if(!blank_prompt)
        {
            if(kcpp_data->use_fastforward)
            {
                ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, false, true);
            }
        }
        if(is_mamba || is_rwkv_new)
        {
            if(n_past==0)
            {
                llama_kv_cache_clear(llama_ctx_v4);
                if(draft_ctx)
                {
                    llama_kv_cache_clear(draft_ctx);
                }
            }
            else if(embd_inp.size()==0)
            {
                embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]);
                n_past -= 1;
            }
        }
    }
    else
    {
        bool triggersc = kcpp_data->use_smartcontext;
        if(!blank_prompt) //special case for blank prompts, no fast forward or shifts
        {
            if(kcpp_data->use_fastforward && kcpp_data->use_contextshift && (file_format == FileFormat::GGUF_GENERIC))
            {
                PurgeMissingTokens(llama_ctx_v4, draft_ctx, current_context_tokens, embd_inp, inputs.max_length, nctx);
                triggersc = false;
            }
            if(kcpp_data->use_fastforward)
            {
                ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, triggersc, false);
            }
        }
        if(file_format == FileFormat::GGUF_GENERIC)
        {
            llama_kv_cache_seq_rm(llama_ctx_v4, 0, n_past, -1);
            if(draft_ctx)
            {
                llama_kv_cache_seq_rm(draft_ctx, 0, n_past, -1);
            }
        }
    }

    bool blasmode = (embd_inp.size() >= 32 && kcpp_cpu_has_blas() && kcpp_data->n_batch>=32);

    current_context_tokens.resize(n_past);

    remaining_tokens = kcpp_data->n_predict;
    int input_consumed = 0;
    std::mt19937 rng(kcpp_data->seed);

    //prepare sampler order
    std::vector<samplers> sampler_order;
    if(inputs.sampler_len<=0) //list by value
    {
        sampler_order = {
            KCPP_SAMPLER_REP_PEN,
            KCPP_SAMPLER_TOP_K,
            KCPP_SAMPLER_TOP_A,
            KCPP_SAMPLER_TFS,
            KCPP_SAMPLER_TYP,
            KCPP_SAMPLER_TOP_P,
            KCPP_SAMPLER_TEMP
        };
    }
    else
    {
        for(int i=0;i<inputs.sampler_len;++i)
        {
            sampler_order.push_back(inputs.sampler_order[i]);
        }
    }

    bool startedsampling = false;
    bool v3_use_scratch = true; //for normal inference always use scratch

    speculative_draft_result draft_results; //only use if drafting was used
    bool draft_used = false;
    int draft_successes = 0;
    int draft_failures = 0;

    time0 = timer_check();
    timer_start();

    if(file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
    {
        if(n_past==0)
        {
            if(file_format == FileFormat::RWKV_1)
            {
                rwkv_ctx_v2->state_in = nullptr;
            }
            else
            {
                rwkv_ctx_v3->state_in = nullptr;
            }
        }
        else
        {
            if (file_format == FileFormat::RWKV_1)
            {
                rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out;
            }
            else
            {
                rwkv_ctx_v3->state_in = rwkv_ctx_v3->state_out;
            }

            //if it's empty, push in the final previous token
            if(embd_inp.size()==0 && current_context_tokens.size()>0)
            {
                embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]);
                current_context_tokens.pop_back();
            }
        }
    }

    if(n_vocab<=0)
    {
        printf("\nWarning! n_vocab is invalid, maybe bad format!");
    }

    if(allow_regular_prints)
    {
        printf("\n");
    }

    if (debugmode==1 && !is_quiet)
    {
        std::string outstr = "";
        printf("\n[Debug: Dump Forwarded Input Tokens, format: %d]\n", file_format);
        outstr += get_tok_vec_str(embd_inp);
        outstr += "\n\n[Debug: n_past="+std::to_string(n_past)+" Context Size = " + std::to_string(current_context_tokens.size()) + "]\n";
        outstr += get_tok_vec_str(current_context_tokens);
        printf("%s\n\n", RemoveBell(outstr).c_str());
    }

    while (remaining_tokens > 0 && !early_abort)
    {
        gpt_vocab::id id = 0;
        // predict
        unsigned int embdsize = embd.size();
        //print progress
        if (!startedsampling && allow_regular_prints)
        {
            printf("\rProcessing Prompt%s (%d / %zu tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp.size());
        }
        fflush(stdout);

        if (embdsize > 0)
        {
            bool evalres = false;
            if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
            {
                evalres = (llama_v2_eval(llama_ctx_v2, embd.data(), embdsize, n_past, GetThreadsToUse(blasmode))==0);
            }
            else if(file_format == FileFormat::GGJT_3)
            {
                evalres = (llama_v3_eval(llama_ctx_v3, embd.data(), embdsize, n_past, GetThreadsToUse(blasmode))==0);
            }
            else if(file_format == FileFormat::GGUF_GENERIC)
            {
                if(embd.size()!=1 || draft_ctx==nullptr || remaining_tokens<=speculative_chunk_amt || grammar!=nullptr || startedsampling==false) //for large batch, or if no draft model, PP/TG as usual
                {
                    draft_used = false;
                    bool use_mrope = (file_format==FileFormat::GGUF_GENERIC && file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL);
                    kcpp_embd_batch batch = kcpp_embd_batch(embd, n_past, use_mrope, false);
                    evalres = (llama_decode(llama_ctx_v4, batch.batch)==0);
                    if(draft_ctx)
                    {
                        evalres = (evalres && (llama_decode(draft_ctx, batch.batch)==0));
                    }
                } else { //individual tokens AND speculative is used (generation)
                    draft_used = true;
                    draft_results = speculative_decoding_eval_chunk(draft_ctx, llama_ctx_v4, embd, n_vocab, n_past);
                    evalres = draft_results.draft_success;
                    if(debugmode==1 && !is_quiet)
                    {
                        std::string draftedtoks = get_tok_vec_str(draft_results.draftids);
                        printf("\nDrafted %d Tokens: [%s]\n",speculative_chunk_amt,draftedtoks.c_str());
                    }
                }
            }
            else if(file_format==FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
            {
                if (file_format == FileFormat::RWKV_1)
                {
                    evalres = rwkv_v2_eval(rwkv_ctx_v2, embd[0], rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out);
                    memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float) * rwkv_vocab.size());
                    rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out;
                }
                else
                {
                    if(embd.size()>1)
                    {
                        evalres = rwkv_eval_sequence(rwkv_ctx_v3, GetThreadsToUse(blasmode), (uint32_t*)embd.data(), embd.size(), rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
                    }
                    else
                    {
                        bool ignoreLogits = (!startedsampling && ((int)embd_inp.size() > input_consumed + 2));
                        evalres = rwkv_eval(rwkv_ctx_v3, GetThreadsToUse(blasmode), embd[0], rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, ignoreLogits?nullptr:rwkv_ctx_v3->logits_out);
                    }

                    memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * rwkv_vocab.size());
                    rwkv_ctx_v3->state_in = rwkv_ctx_v3->state_out;
                }
            }
            else if(file_format==FileFormat::GPT2_1)
            {
                evalres = legacy_gpt2_eval(gpt2_ctx_v1, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3)
            {
                evalres = gpt2_v2_eval(gpt2_ctx_v2, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::GPT2_4)
            {
                evalres = gpt2_eval(gpt2_ctx_v3, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token, v3_use_scratch);
            }
            else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5)
            {
                evalres = gpt_neox_v2_eval(neox_ctx_v2, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token);
            }
            else if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
            {
                evalres = gpt_neox_eval(neox_ctx_v3, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token, v3_use_scratch);
            }
            else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
            {
                evalres = legacy_gptj_eval(gptj_ctx_v1, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4)
            {
                evalres = gptj_v2_eval(gptj_ctx_v2, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token);
            }
            else if(file_format==FileFormat::GPTJ_5)
            {
                evalres = gptj_eval(gptj_ctx_v3, GetThreadsToUse(blasmode), n_past, embd, logits, mem_per_token, v3_use_scratch);
            }
            else if(file_format==FileFormat::MPT_1)
            {
                evalres = mpt_eval(mpt_ctx_v3, GetThreadsToUse(blasmode), n_past, embd, logits, false, mem_per_token, v3_use_scratch);
            }
            else
            {
                printf("\nCannot find eval function\n");
            }

            if (!evalres)
            {
                fprintf(stderr, "\nFailed to predict at token position %d! Check your context buffer sizes!\n",n_past);
                output.text = nullptr;
                output.status = 0;
                output.prompt_tokens = output.completion_tokens = 0;
                output.stopreason = stop_reason::INVALID;
                generation_finished = true;
                return output;
            }
        }

        n_past += embd.size();
        embd.clear();

        if (!early_abort && (int)embd_inp.size() <= input_consumed) //if decoding was aborted, DO NOT perform any sampling
        {
            // out of user input, sample next token
            const float top_k = kcpp_data->top_k;
            const float top_p = kcpp_data->top_p;
            const float min_p = kcpp_data->min_p;
            const float temp = kcpp_data->temp;
            const float top_a = inputs.top_a;
            const float repeat_penalty = kcpp_data->repeat_penalty;
            const float presence_penalty = kcpp_data->presence_penalty;
            const float typical_p = kcpp_data->typical_p;
            const float tfs_z = kcpp_data->tfs_z;
            const float nsigma = kcpp_data->nsigma;
            const float dynatemp_range = kcpp_data->dynatemp_range;
            const float dynatemp_exponent = kcpp_data->dynatemp_exponent;
            const float smoothing_factor = kcpp_data->smoothing_factor;

            if (!startedsampling)
            {
                startedsampling = true;
                time1 = timer_check();
                timer_start();
                if(allow_regular_prints)
                {
                    printf("\n");
                }
            }

            unsigned int eosID = GetEosID(file_format, n_vocab);
            unsigned int eotID = GetEotID(file_format);
            float * logitsPtr;
            float lowestLogit = 0;
            int btsize = banned_token_ids.size();

            //sample pending logits. usually only 1, unless speculative decoding
            int logits_to_sample = 1;
            int logits_sampled = 0;
            bool abort_draft = false;
            if(draft_used)
            {
                logits_to_sample = draft_results.drafted_amount;
            }
            while(logits_sampled<logits_to_sample && remaining_tokens>0 && !abort_draft && !early_abort)
            {
                if(logits_sampled>0)
                {
                    //this is not the first loop, so we need to increment some things
                    n_past += 1;
                }
                if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3 || file_format == FileFormat::GGUF_GENERIC)
                {
                    if(file_format == FileFormat::GGUF_GENERIC)
                    {
                        if(draft_used)
                        {
                            logitsPtr = draft_results.actual_logits[logits_sampled];
                        }
                        else
                        {
                            logitsPtr = llama_get_logits(llama_ctx_v4);
                        }
                    }
                    else if(file_format == FileFormat::GGJT_3)
                    {
                        logitsPtr = llama_v3_get_logits(llama_ctx_v3);
                    }
                    else
                    {
                        logitsPtr = llama_v2_get_logits(llama_ctx_v2);
                    }
                    lowestLogit = LowestLogit(logitsPtr,n_vocab);
                }
                else
                {
                    logitsPtr = logits.data(); //legacy rwkv, neox, gptj etc
                    lowestLogit = LowestLogit(logits);
                }

                if (!inputs.allow_eos_token && !inputs.bypass_eos_token)
                {
                    // set the logit of the eos token to very low to avoid sampling it
                    if(eosID!=LLAMA_TOKEN_NULL)
                    {
                        logitsPtr[eosID] = lowestLogit;
                    }
                    if(eotID!=-1)
                    {
                        logitsPtr[eotID] = lowestLogit;
                    }
                }
                if(btsize>0)
                {
                    for(int t=0;t<btsize;++t)
                    {
                        logitsPtr[banned_token_ids[t]]=lowestLogit;
                    }
                }

                //handle temp bans from antislop
                if (antislop_banned_token_ids.find(n_past) != antislop_banned_token_ids.end()) {
                    std::vector<int>& bans = antislop_banned_token_ids[n_past];
                    for(int t=0;t<bans.size();++t)
                    {
                        logitsPtr[bans[t]]=lowestLogit;
                    }
                }

                id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, kcpp_data->rep_pen_slope, presence_penalty,
                top_k, top_a, top_p, min_p, typical_p, tfs_z, nsigma, temp, rng,
                kcpp_data->mirostat, kcpp_data->mirostat_tau, kcpp_data->mirostat_eta,
                kcpp_data->dry_multiplier, kcpp_data->dry_base,
                kcpp_data->dry_allowed_length, kcpp_data->dry_penalty_last_n, kcpp_data->xtc_threshold, kcpp_data->xtc_probability,
                sampler_order, grammar, dynatemp_range, dynatemp_exponent, smoothing_factor);

                if(draft_used)
                {
                    int32_t draftedid = draft_results.draftids[logits_sampled];
                    if(debugmode==1 && !is_quiet)
                    {
                        std::string drafttok = FileFormatTokenizeID(draftedid, file_format, true);
                        std::string realtok = FileFormatTokenizeID(id, file_format, true);
                        printf("(Draft %d/%d): Predicted=%d (%s), Actual=%d (%s) [%s]\n",(logits_sampled+1),logits_to_sample,draftedid,drafttok.c_str(),id,realtok.c_str(),(draftedid==id?"PASS":"FAIL"));
                    }
                    if(draftedid!=id) //draft mismatch, abort
                    {
                        draft_failures += 1;
                        abort_draft = true;
                    } else {
                        draft_successes += 1;
                    }
                }

                if (grammar != nullptr) {
                    grammar_accept_token(file_format, n_vocab, grammar, id);
                }

                if (!last_n_tokens.empty())
                {
                    last_n_tokens.erase(last_n_tokens.begin());
                }
                last_n_tokens.push_back(id);
                current_context_tokens.push_back(id);

                // add it to the context
                embd.clear();
                embd.push_back(id);

                // decrement remaining sampling budget
                --remaining_tokens;

                for (auto eid : embd)
                {
                    std::string tokenizedstr = FileFormatTokenizeID(eid, file_format, inputs.render_special);
                    if(!inputs.render_special && (eid==eosID || (eid==eotID && eid!=-1) || VecContainsIntVal(special_stop_sequence,id))) //extra filter to avoid unwanted special tokens
                    {
                        tokenizedstr = ""; //prevent render
                    }

                    delayed_generated_tokens.push_back(tokenizedstr);
                    while(delayed_generated_tokens.size() > delayed_generated_tokens_limit && delayed_generated_tokens.size() > 0)
                    {
                        generated_tokens.push_back(delayed_generated_tokens[0]);
                        concat_output_mtx.lock();
                        concat_output += delayed_generated_tokens[0];
                        concat_output_mtx.unlock();
                        delayed_generated_tokens.pop_front();
                    }
                }

                if (startedsampling && allow_regular_prints)
                {
                    printf("\rGenerating (%d / %d tokens)", (kcpp_data->n_predict - remaining_tokens), kcpp_data->n_predict);
                }
                if(debugmode==1 && !is_quiet && top_picks_history.size()>0)
                {
                    printf(" [");
                    bool firstloop = true;
                    TopPicksData toppick = top_picks_history[top_picks_history.size()-1];
                    std::string topstr = toppick.selected_token;
                    ::utreplace(topstr, "\n", "\\n");
                    printf("(%s %.2f%%)", RemoveBell(topstr).c_str(), toppick.selected_probability*100);
                    int maxtoshow = (toppick.tokenid.size()>4?4:toppick.tokenid.size());
                    for (int i=0;i<maxtoshow;++i)
                    {
                        if(toppick.tokenid[i]==toppick.selected_tokenid)
                        {
                            continue;
                        }
                        printf(" ");
                        std::string tokenizedstr = toppick.tokens[i];
                        ::utreplace(tokenizedstr, "\n", "\\n");
                        printf("(%s %.2f%%)", RemoveBell(tokenizedstr).c_str(), toppick.p[i]*100);
                    }
                    printf("]\n");
                }

                //anti slop detection
                if (banned_phrases.size() > 0)
                {
                    std::string scanstr = "";
                    for (int i = 0; i < delayed_generated_tokens.size(); ++i)
                    {
                        scanstr += delayed_generated_tokens[i];
                    }
                    scanstr = toLowerCase(scanstr);
                    for (const auto &matched : banned_phrases)
                    {
                        std::string matched_lower = toLowerCase(matched);
                        if (scanstr.find(matched_lower) != std::string::npos)
                        {
                            //find the position in the string that contains all necessary tokens
                            std::string checkstr = "";
                            int rewind_amt = 0;
                            for (int i = delayed_generated_tokens.size() - 1; i >= 0; --i)
                            {
                                checkstr = delayed_generated_tokens[i] + checkstr;
                                ++rewind_amt;
                                if (toLowerCase(checkstr).find(matched_lower) != std::string::npos)
                                {
                                    break;
                                }
                            }
                            if (rewind_amt > 0 && (current_context_tokens.size() - rewind_amt) > 0)
                            {
                                int last_tok = current_context_tokens[current_context_tokens.size() - rewind_amt];
                                delayed_generated_tokens.resize(delayed_generated_tokens.size() - rewind_amt);
                                ContextRewind(embd, current_context_tokens, n_past, last_n_tokens, rewind_amt);

                                //immediately terminate drafting if used
                                abort_draft = true;

                                // Check if the key exists
                                int banindex = n_past+1;
                                if (antislop_banned_token_ids.find(banindex) == antislop_banned_token_ids.end()) {
                                    antislop_banned_token_ids[banindex] = std::vector<int>();
                                }
                                std::vector<int>& current_ids = antislop_banned_token_ids[banindex];
                                current_ids.push_back(last_tok);

                                if (allow_regular_prints && debugmode == 1)
                                {
                                    auto match_clean = matched;
                                    replace_all(match_clean, "\n", "\\n");
                                    printf("\n(Banned Phrase Detected: %s - Add ID %d to banlist at index %d, and rewinding %d tokens)\n", match_clean.c_str(), last_tok, banindex, rewind_amt);
                                }

                                break;
                            }
                        }
                    }
                }

                if(!early_abort)
                {
                    if(!inputs.bypass_eos_token && inputs.allow_eos_token && (id==eosID || (id==eotID && id!=-1)))
                    {
                        if(allow_regular_prints)
                        {
                            printf("\n(EOS token triggered! ID:%d)",id);
                        }
                        early_abort = true;
                        last_stop_reason = stop_reason::EOS_TOKEN_HIT;
                    }
                }

                if(!early_abort)
                {
                    for (const auto &matched : special_stop_sequence)
                    {
                        if(id==matched)
                        {
                            if(allow_regular_prints)
                            {
                                printf("\n(Special Stop Token Triggered! ID:%d)",matched);
                            }
                            early_abort = true;
                            last_stop_reason = stop_reason::EOS_TOKEN_HIT;
                            break;
                        }
                    }
                }

                if(!early_abort)
                {
                    for (const auto &matched : stop_sequence)
                    {
                        if (concat_output.find(matched) != std::string::npos)
                        {
                            early_abort = true;
                            if(allow_regular_prints)
                            {
                                auto match_clean = matched;
                                replace_all(match_clean, "\n", "\\n");
                                printf("\n(Stop sequence triggered: %s)", match_clean.c_str());
                            }
                            last_stop_reason = stop_reason::CUSTOM_STOPPER;
                            break;
                        }
                    }
                }

                logits_sampled += 1;
            }

            //if we have somehow skipped ahead (e.g drafting), ensure that all tokens after npast are purged
            if (file_format == FileFormat::GGUF_GENERIC && draft_used)
            {
                llama_kv_cache_seq_rm(llama_ctx_v4, 0, n_past, -1);
                if (draft_ctx) {
                    llama_kv_cache_seq_rm(draft_ctx, 0, n_past, -1);
                }
            }

            fflush(stdout);
        }
        else if(!early_abort) //do not ingest prompt if aborted!
        {
            // some user input remains from prompt or interaction, forward it to processing
            while ((int)embd_inp.size() > input_consumed)
            {
                int currtoken = embd_inp[input_consumed];
                if(currtoken==LLAVA_TOKEN_IDENTIFIER_A || currtoken==LLAVA_TOKEN_IDENTIFIER_B) //special llava token hit
                {
                    if(!llava_embds_built) //this should never happen! however, handle it anyway
                    {
                        PrepareLlavaEmbds(nctx, llava_sep);
                        llava_embds_built = true;
                        printf("\nSomehow vision embd was not prepared, rebuilting it...\n");
                    }

                    //if partial batch, dispatch existing first
                    if(embd.size()>0)
                    {
                        break;
                    }
                    else
                    {
                        //batch is empty, do image processing
                        int llavatokenscounted = 0;
                        int llavatokensevaled = 0;
                        int sepsize = llava_sep.size();
                        while(input_consumed < embd_inp.size() && (embd_inp[input_consumed]==LLAVA_TOKEN_IDENTIFIER_A || embd_inp[input_consumed]==LLAVA_TOKEN_IDENTIFIER_B))
                        {
                            if (!last_n_tokens.empty())
                            {
                                last_n_tokens.erase(last_n_tokens.begin());
                            }
                            last_n_tokens.push_back(currtoken);
                            current_context_tokens.push_back(currtoken);
                            ++input_consumed;
                            ++llavatokenscounted;
                        }
                        for(int i=0;i<llava_images.size();++i)
                        {
                            //note: no handling for draft_ctx as we don't support vision for it
                            if(i>0 && sepsize>0)
                            {
                                //add a separator between each image
                                auto evr = llama_decode(llama_ctx_v4, llama_batch_get_one(llava_sep.data(), sepsize));
                                if(evr!=0)
                                {
                                    printf("\nError when appending llava separator: %d\n",evr);
                                }
                                else
                                {
                                    printf("\rProcessing LLaVa Separator (%d tokens)",sepsize);
                                }
                                n_past += sepsize;
                                llavatokensevaled += sepsize;
                            }

                            if(allow_regular_prints)
                            {
                                printf("\rProcessing LLaVa Embedding %d (%d tokens)",(i+1), llava_images[i].clp_image_tokens);
                            }
                            bool err = kcpp_eval_image(llama_ctx_v4,llava_images[i].clp_img_embd,llava_images[i].clp_image_tokens,kcpp_data->n_batch,&n_past);
                            llavatokensevaled += llava_images[i].clp_image_tokens;
                            if(!err)
                            {
                                llava_composite_image_signature = ""; //force invalidate
                                fprintf(stderr, "\nFailed to eval llava image at %d!\n",n_past);
                                output.text = nullptr;
                                output.status = 0;
                                output.prompt_tokens = output.completion_tokens = 0;
                                output.stopreason = stop_reason::INVALID;
                                generation_finished = true;
                                return output;
                            }
                        }
                        if(llavatokenscounted!=llavatokensevaled)
                        {
                            llava_composite_image_signature = ""; //force invalidate
                            fprintf(stderr, "\nLLAVA image tokens mismatch at %d! (%d vs %d tokens)\n",n_past,llavatokenscounted,llavatokensevaled);
                            output.text = nullptr;
                            output.status = 0;
                            output.prompt_tokens = output.completion_tokens = 0;
                            output.stopreason = stop_reason::INVALID;
                            generation_finished = true;
                            return output;
                        }
                    }
                }
                else
                {
                    embd.push_back(currtoken);
                    if (!last_n_tokens.empty())
                    {
                        last_n_tokens.erase(last_n_tokens.begin());
                    }
                    last_n_tokens.push_back(currtoken);
                    current_context_tokens.push_back(currtoken);
                    ++input_consumed;
                    if ((int)embd.size() >= kcpp_data->n_batch)
                    {
                        break;
                    }
                }

            }
        }
    }

    //flush any remaining delayed tokens
    while(delayed_generated_tokens.size() > 0)
    {
        generated_tokens.push_back(delayed_generated_tokens[0]);
        concat_output_mtx.lock();
        concat_output += delayed_generated_tokens[0];
        concat_output_mtx.unlock();
        delayed_generated_tokens.pop_front();
    }

    if(debugmode==1 && !is_quiet && file_format == FileFormat::GGUF_GENERIC)
    {
        printf("\n");
        llama_perf_context_print(llama_ctx_v4);
    }

    time2 = timer_check();
    float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size()));
    float ts1 = (1000.0/pt1);
    int realnpredict = kcpp_data->n_predict-remaining_tokens;
    float pt2 = (time2*1000.0/(realnpredict<=0?1:realnpredict));
    float ts2 = (1000.0/pt2);
    float tokens_per_second = (realnpredict <= 0 ? 0 : realnpredict / (time1 + time2));
    if(debugmode==1)
    {
        printf("\n[%s] CtxLimit:%d/%d, Amt:%d/%d, Init:%.2fs, Process:%.2fs (%.1fms/T = %.2fT/s), Generate:%.2fs (%.1fms/T = %.2fT/s), Total:%.2fs (%.2fT/s)",get_timestamp_str().c_str(),(int)current_context_tokens.size(),(int)nctx, realnpredict, kcpp_data->n_predict, time0, time1, pt1, ts1, time2, pt2, ts2, (time1 + time2), tokens_per_second);
    }
    else
    {
         printf("\n[%s] CtxLimit:%d/%d, Amt:%d/%d, Init:%.2fs, Process:%.2fs (%.2fT/s), Generate:%.2fs (%.2fT/s), Total:%.2fs",get_timestamp_str().c_str(),(int)current_context_tokens.size(),(int)nctx, realnpredict, kcpp_data->n_predict, time0, time1, ts1, time2, ts2, (time1 + time2));
    }
    if(debugmode==1 && !is_quiet && (draft_successes+draft_failures)>0)
    {
        printf("\n(Draft Results - Success:%d, Failure:%d)",draft_successes,draft_failures);
    }
    fflush(stdout);
    output.status = 1;
    int finaltokcount = (int)current_context_tokens.size()-realnpredict;
    output.prompt_tokens = (finaltokcount<0?0:finaltokcount);
    output.completion_tokens = realnpredict;
    output.stopreason = last_stop_reason;
    last_eval_time = pt2;
    last_process_time = pt1;
    last_token_count = realnpredict;
    last_seed = kcpp_data->seed;
    last_draft_failed = draft_failures;
    last_draft_success = draft_successes;
    total_gens += 1;
    concat_output_mtx.lock();
    concat_output_reader_copy_res = concat_output;
    concat_output_mtx.unlock();
    output.text = concat_output_reader_copy_res.c_str();
    generation_finished = true;
    return output;
}