File size: 89,937 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 |
#pragma once
//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
// - a set of tensor operations
// - automatic differentiation
// - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
// - linear regression
// - support vector machines
// - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
// {
// struct ggml_v3_init_params params = {
// .mem_size = 16*1024*1024,
// .mem_buffer = NULL,
// };
//
// // memory allocation happens here
// struct ggml_v3_context * ctx = ggml_v3_init(params);
//
// struct ggml_v3_tensor * x = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F32, 1);
//
// ggml_v3_set_param(ctx, x); // x is an input variable
//
// struct ggml_v3_tensor * a = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F32, 1);
// struct ggml_v3_tensor * b = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F32, 1);
// struct ggml_v3_tensor * x2 = ggml_v3_mul(ctx, x, x);
// struct ggml_v3_tensor * f = ggml_v3_add(ctx, ggml_v3_mul(ctx, a, x2), b);
//
// ...
// }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
// {
// ...
//
// struct ggml_v3_cgraph * gf = ggml_v3_new_graph(ctx);
// ggml_v3_build_forward_expand(gf, f);
//
// // set the input variable and parameter values
// ggml_v3_set_f32(x, 2.0f);
// ggml_v3_set_f32(a, 3.0f);
// ggml_v3_set_f32(b, 4.0f);
//
// ggml_v3_graph_compute_with_ctx(ctx, &gf, n_threads);
//
// printf("f = %f\n", ggml_v3_get_f32_1d(f, 0));
//
// ...
// }
//
// The actual computation is performed in the ggml_v3_graph_compute() function.
//
// The ggml_v3_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_v3_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_v3_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_v3_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_v3_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
// - ggml_v3_permute()
// - ggml_v3_conv_1d_1s()
// - ggml_v3_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
// What is Automatic Differentiation?
// https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_v3_tensor)
//
// The tensors are stored in memory via the ggml_v3_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
// {
// struct ggml_v3_tensor * c = ggml_v3_add(ctx, a, b);
//
// assert(c->src[0] == a);
// assert(c->src[1] == b);
// }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_v3_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
// {
// const int nx = 2;
// const int ny = 3;
//
// struct ggml_v3_tensor * a = ggml_v3_new_tensor_2d(ctx, GGML_V3_TYPE_F32, nx, ny);
//
// for (int y = 0; y < ny; y++) {
// for (int x = 0; x < nx; x++) {
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
// }
// }
//
// ...
// }
//
// Alternatively, there are helper functions, such as ggml_v3_get_f32_1d() and ggml_v3_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_v3_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//
#ifdef GGML_V3_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_V3_BUILD
# define GGML_V3_API __declspec(dllexport)
# else
# define GGML_V3_API __declspec(dllimport)
# endif
# else
# define GGML_V3_API __attribute__ ((visibility ("default")))
# endif
#else
# define GGML_V3_API
#endif
// TODO: support for clang
# define GGML_V3_DEPRECATED(func, hint) func
#ifndef __GNUC__
# define GGML_V3_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
# define GGML_V3_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define GGML_V3_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#define GGML_V3_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_V3_FILE_VERSION 1
#define GGML_V3_QNT_VERSION 2 // bump this on quantization format changes
#define GGML_V3_QNT_VERSION_FACTOR 1000 // do not change this
#define GGML_V3_MAX_DIMS 4
#define GGML_V3_MAX_PARAMS 2048
#define GGML_V3_MAX_CONTEXTS 64
#define GGML_V3_MAX_SRC 10
#ifndef GGML_V3_MAX_NAME
#define GGML_V3_MAX_NAME 64
#endif
#define GGML_V3_MAX_OP_PARAMS 64
#define GGML_V3_DEFAULT_N_THREADS 4
#define GGML_V3_DEFAULT_GRAPH_SIZE 2048
#if UINTPTR_MAX == 0xFFFFFFFF
#define GGML_V3_MEM_ALIGN 4
#else
#define GGML_V3_MEM_ALIGN 16
#endif
#define GGML_V3_EXIT_SUCCESS 0
#define GGML_V3_EXIT_ABORTED 1
#define GGUF_V3_MAGIC "GGUF"
#define GGUF_V3_VERSION 3
#define GGUF_V3_DEFAULT_ALIGNMENT 32
#define GGML_V3_UNUSED(x) (void)(x)
#define GGML_V3_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define GGML_V3_ASSERT_CONTINUE(x) \
do { \
if (!(x)) { \
fprintf(stderr, "GGML_V3_ASSERT_CONTINUE: %s:%d: %s\n", __FILE__, __LINE__, #x); \
} \
} while (0)
#define GGML_V3_ASSERT(x) \
do { \
if (!(x)) { \
fflush(stdout); \
fprintf(stderr, "GGML_V3_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
ggml_v3_print_backtrace(); \
abort(); \
} \
} while (0)
#ifndef NDEBUG
#define GGML_V3_UNREACHABLE() GGML_V3_ASSERT(!"statement should not be reached")
#elif defined(__GNUC__)
#define GGML_V3_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
#define GGML_V3_UNREACHABLE() __assume(0)
#else
#define GGML_V3_UNREACHABLE() ((void) 0)
#endif
// used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability.
//
// example:
//
// GGML_V3_TENSOR_LOCALS(int64_t, ne1, src1, ne);
// GGML_V3_TENSOR_LOCALS(size_t, nb1, src1, nb);
//
#define GGML_V3_TENSOR_LOCALS_1(type, prefix, pointer, array) \
const type prefix##0 = (pointer)->array[0]; \
GGML_V3_UNUSED(prefix##0);
#define GGML_V3_TENSOR_LOCALS_2(type, prefix, pointer, array) \
GGML_V3_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
const type prefix##1 = (pointer)->array[1]; \
GGML_V3_UNUSED(prefix##1);
#define GGML_V3_TENSOR_LOCALS_3(type, prefix, pointer, array) \
GGML_V3_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
const type prefix##2 = (pointer)->array[2]; \
GGML_V3_UNUSED(prefix##2);
#define GGML_V3_TENSOR_LOCALS(type, prefix, pointer, array) \
GGML_V3_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
const type prefix##3 = (pointer)->array[3]; \
GGML_V3_UNUSED(prefix##3);
#define GGML_V3_TENSOR_UNARY_OP_LOCALS \
GGML_V3_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_V3_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_V3_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_V3_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_V3_TENSOR_BINARY_OP_LOCALS \
GGML_V3_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_V3_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_V3_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_V3_TENSOR_LOCALS(size_t, nb1, src1, nb) \
GGML_V3_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_V3_TENSOR_LOCALS(size_t, nb, dst, nb)
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__ARM_NEON) && defined(__CUDACC__)
typedef half ggml_v3_fp16_t;
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
typedef __fp16 ggml_v3_fp16_t;
#else
typedef uint16_t ggml_v3_fp16_t;
#endif
// convert FP16 <-> FP32
GGML_V3_API float ggml_v3_fp16_to_fp32(ggml_v3_fp16_t x);
GGML_V3_API ggml_v3_fp16_t ggml_v3_fp32_to_fp16(float x);
GGML_V3_API void ggml_v3_fp16_to_fp32_row(const ggml_v3_fp16_t * x, float * y, int n);
GGML_V3_API void ggml_v3_fp32_to_fp16_row(const float * x, ggml_v3_fp16_t * y, int n);
struct ggml_v3_object;
struct ggml_v3_context;
enum ggml_v3_type {
GGML_V3_TYPE_F32 = 0,
GGML_V3_TYPE_F16 = 1,
GGML_V3_TYPE_Q4_0 = 2,
GGML_V3_TYPE_Q4_1 = 3,
// GGML_V3_TYPE_Q4_2 = 4, support has been removed
// GGML_V3_TYPE_Q4_3 (5) support has been removed
GGML_V3_TYPE_Q5_0 = 6,
GGML_V3_TYPE_Q5_1 = 7,
GGML_V3_TYPE_Q8_0 = 8,
GGML_V3_TYPE_Q8_1 = 9,
// k-quantizations
GGML_V3_TYPE_Q2_K = 10,
GGML_V3_TYPE_Q3_K = 11,
GGML_V3_TYPE_Q4_K = 12,
GGML_V3_TYPE_Q5_K = 13,
GGML_V3_TYPE_Q6_K = 14,
GGML_V3_TYPE_Q8_K = 15,
GGML_V3_TYPE_IQ2_XXS = 16,
GGML_V3_TYPE_IQ2_XS = 17,
GGML_V3_TYPE_I8,
GGML_V3_TYPE_I16,
GGML_V3_TYPE_I32,
GGML_V3_TYPE_COUNT,
};
// precision
enum ggml_v3_prec {
GGML_V3_PREC_DEFAULT,
GGML_V3_PREC_F32,
};
enum ggml_v3_backend_type {
GGML_V3_BACKEND_CPU = 0,
GGML_V3_BACKEND_GPU = 10,
GGML_V3_BACKEND_GPU_SPLIT = 20,
};
// model file types
enum ggml_v3_ftype {
GGML_V3_FTYPE_UNKNOWN = -1,
GGML_V3_FTYPE_ALL_F32 = 0,
GGML_V3_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
GGML_V3_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
GGML_V3_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
};
// available tensor operations:
enum ggml_v3_op {
GGML_V3_OP_NONE = 0,
GGML_V3_OP_DUP,
GGML_V3_OP_ADD,
GGML_V3_OP_ADD1,
GGML_V3_OP_ACC,
GGML_V3_OP_SUB,
GGML_V3_OP_MUL,
GGML_V3_OP_DIV,
GGML_V3_OP_SQR,
GGML_V3_OP_SQRT,
GGML_V3_OP_LOG,
GGML_V3_OP_SUM,
GGML_V3_OP_SUM_ROWS,
GGML_V3_OP_MEAN,
GGML_V3_OP_ARGMAX,
GGML_V3_OP_REPEAT,
GGML_V3_OP_REPEAT_BACK,
GGML_V3_OP_CONCAT,
GGML_V3_OP_SILU_BACK,
GGML_V3_OP_NORM, // normalize
GGML_V3_OP_RMS_NORM,
GGML_V3_OP_RMS_NORM_BACK,
GGML_V3_OP_GROUP_NORM,
GGML_V3_OP_MUL_MAT,
GGML_V3_OP_MUL_MAT_ID,
GGML_V3_OP_OUT_PROD,
GGML_V3_OP_SCALE,
GGML_V3_OP_SET,
GGML_V3_OP_CPY,
GGML_V3_OP_CONT,
GGML_V3_OP_RESHAPE,
GGML_V3_OP_VIEW,
GGML_V3_OP_PERMUTE,
GGML_V3_OP_TRANSPOSE,
GGML_V3_OP_GET_ROWS,
GGML_V3_OP_GET_ROWS_BACK,
GGML_V3_OP_DIAG,
GGML_V3_OP_DIAG_MASK_INF,
GGML_V3_OP_DIAG_MASK_ZERO,
GGML_V3_OP_SOFT_MAX,
GGML_V3_OP_SOFT_MAX_BACK,
GGML_V3_OP_ROPE,
GGML_V3_OP_ROPE_BACK,
GGML_V3_OP_ALIBI,
GGML_V3_OP_CLAMP,
GGML_V3_OP_CONV_TRANSPOSE_1D,
GGML_V3_OP_IM2COL,
GGML_V3_OP_CONV_TRANSPOSE_2D,
GGML_V3_OP_POOL_1D,
GGML_V3_OP_POOL_2D,
GGML_V3_OP_UPSCALE, // nearest interpolate
GGML_V3_OP_PAD,
GGML_V3_OP_ARGSORT,
GGML_V3_OP_LEAKY_RELU,
GGML_V3_OP_FLASH_ATTN,
GGML_V3_OP_FLASH_FF,
GGML_V3_OP_FLASH_ATTN_BACK,
GGML_V3_OP_WIN_PART,
GGML_V3_OP_WIN_UNPART,
GGML_V3_OP_GET_REL_POS,
GGML_V3_OP_ADD_REL_POS,
GGML_V3_OP_UNARY,
GGML_V3_OP_MAP_UNARY,
GGML_V3_OP_MAP_BINARY,
GGML_V3_OP_MAP_CUSTOM1_F32,
GGML_V3_OP_MAP_CUSTOM2_F32,
GGML_V3_OP_MAP_CUSTOM3_F32,
GGML_V3_OP_MAP_CUSTOM1,
GGML_V3_OP_MAP_CUSTOM2,
GGML_V3_OP_MAP_CUSTOM3,
GGML_V3_OP_CROSS_ENTROPY_LOSS,
GGML_V3_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_V3_OP_COUNT,
};
enum ggml_v3_unary_op {
GGML_V3_UNARY_OP_ABS,
GGML_V3_UNARY_OP_SGN,
GGML_V3_UNARY_OP_NEG,
GGML_V3_UNARY_OP_STEP,
GGML_V3_UNARY_OP_TANH,
GGML_V3_UNARY_OP_ELU,
GGML_V3_UNARY_OP_RELU,
GGML_V3_UNARY_OP_GELU,
GGML_V3_UNARY_OP_GELU_QUICK,
GGML_V3_UNARY_OP_SILU,
GGML_V3_UNARY_OP_COUNT,
};
enum ggml_v3_object_type {
GGML_V3_OBJECT_TENSOR,
GGML_V3_OBJECT_GRAPH,
GGML_V3_OBJECT_WORK_BUFFER
};
enum ggml_v3_log_level {
GGML_V3_LOG_LEVEL_ERROR = 2,
GGML_V3_LOG_LEVEL_WARN = 3,
GGML_V3_LOG_LEVEL_INFO = 4,
GGML_V3_LOG_LEVEL_DEBUG = 5
};
// ggml object
struct ggml_v3_object {
size_t offs;
size_t size;
struct ggml_v3_object * next;
enum ggml_v3_object_type type;
char padding[4];
};
static const size_t GGML_V3_OBJECT_SIZE = sizeof(struct ggml_v3_object);
// n-dimensional tensor
struct ggml_v3_tensor {
enum ggml_v3_type type;
enum ggml_v3_backend_type backend;
struct ggml_v3_backend_buffer * buffer;
int64_t ne[GGML_V3_MAX_DIMS]; // number of elements
size_t nb[GGML_V3_MAX_DIMS]; // stride in bytes:
// nb[0] = ggml_v3_type_size(type)
// nb[1] = nb[0] * (ne[0] / ggml_v3_blck_size(type)) + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_v3_op op;
// op params - allocated as int32_t for alignment
int32_t op_params[GGML_V3_MAX_OP_PARAMS / sizeof(int32_t)];
bool is_param;
struct ggml_v3_tensor * grad;
struct ggml_v3_tensor * src[GGML_V3_MAX_SRC];
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
struct ggml_v3_tensor * view_src;
size_t view_offs;
void * data;
char name[GGML_V3_MAX_NAME];
void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8];
};
static const size_t GGML_V3_TENSOR_SIZE = sizeof(struct ggml_v3_tensor);
// the compute plan that needs to be prepared for ggml_v3_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_v3_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_v3_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_v3_graph_compute()`
int n_threads;
// abort ggml_v3_graph_compute when true
bool (*abort_callback)(void * data);
void * abort_callback_data;
};
enum ggml_v3_cgraph_eval_order {
GGML_V3_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
GGML_V3_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
GGML_V3_CGRAPH_EVAL_ORDER_COUNT
};
struct ggml_v3_hash_set {
size_t size;
struct ggml_v3_tensor ** keys;
};
// computation graph
struct ggml_v3_cgraph {
int size;
int n_nodes;
int n_leafs;
struct ggml_v3_tensor ** nodes;
struct ggml_v3_tensor ** grads;
struct ggml_v3_tensor ** leafs;
struct ggml_v3_hash_set visited_hash_table;
enum ggml_v3_cgraph_eval_order order;
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
// scratch buffer
struct ggml_v3_scratch {
size_t offs;
size_t size;
void * data;
};
struct ggml_v3_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// compute types
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
enum ggml_v3_task_type {
GGML_V3_TASK_INIT = 0,
GGML_V3_TASK_COMPUTE,
GGML_V3_TASK_FINALIZE,
};
struct ggml_v3_compute_params {
enum ggml_v3_task_type type;
// ith = thread index, nth = number of threads
int ith, nth;
// work buffer for all threads
size_t wsize;
void * wdata;
};
// misc
GGML_V3_API void ggml_v3_time_init(void); // call this once at the beginning of the program
GGML_V3_API int64_t ggml_v3_time_ms(void);
GGML_V3_API int64_t ggml_v3_time_us(void);
GGML_V3_API int64_t ggml_v3_cycles(void);
GGML_V3_API int64_t ggml_v3_cycles_per_ms(void);
GGML_V3_API void ggml_v3_print_backtrace(void);
GGML_V3_API void ggml_v3_numa_init(void); // call once for better performance on NUMA systems
GGML_V3_API bool ggml_v3_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_V3_API void ggml_v3_print_object (const struct ggml_v3_object * obj);
GGML_V3_API void ggml_v3_print_objects(const struct ggml_v3_context * ctx);
GGML_V3_API int64_t ggml_v3_nelements (const struct ggml_v3_tensor * tensor);
GGML_V3_API int64_t ggml_v3_nrows (const struct ggml_v3_tensor * tensor);
GGML_V3_API size_t ggml_v3_nbytes (const struct ggml_v3_tensor * tensor);
GGML_V3_API size_t ggml_v3_nbytes_pad (const struct ggml_v3_tensor * tensor); // same as ggml_v3_nbytes() but padded to GGML_V3_MEM_ALIGN
GGML_V3_API int ggml_v3_blck_size(enum ggml_v3_type type);
GGML_V3_API size_t ggml_v3_type_size(enum ggml_v3_type type); // size in bytes for all elements in a block
GGML_V3_API size_t ggml_v3_row_size (enum ggml_v3_type type, int64_t ne); // size in bytes for all elements in a row
GGML_V3_DEPRECATED(
GGML_V3_API double ggml_v3_type_sizef(enum ggml_v3_type type), // ggml_v3_type_size()/ggml_v3_blck_size() as float
"use ggml_v3_row_size() instead");
GGML_V3_API const char * ggml_v3_type_name(enum ggml_v3_type type);
GGML_V3_API const char * ggml_v3_op_name (enum ggml_v3_op op);
GGML_V3_API const char * ggml_v3_op_symbol(enum ggml_v3_op op);
GGML_V3_API const char * ggml_v3_unary_op_name(enum ggml_v3_unary_op op);
GGML_V3_API const char * ggml_v3_op_desc(const struct ggml_v3_tensor * t); // unary or op name
GGML_V3_API size_t ggml_v3_element_size(const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_quantized(enum ggml_v3_type type);
// TODO: temporary until model loading of ggml examples is refactored
GGML_V3_API enum ggml_v3_type ggml_v3_ftype_to_ggml_v3_type(enum ggml_v3_ftype ftype);
GGML_V3_API bool ggml_v3_is_transposed(const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_contiguous(const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_permuted (const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_scalar (const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_vector (const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_matrix (const struct ggml_v3_tensor * tensor);
GGML_V3_API bool ggml_v3_is_3d (const struct ggml_v3_tensor * tensor);
GGML_V3_API int ggml_v3_n_dims (const struct ggml_v3_tensor * tensor); // returns 1 for scalars
GGML_V3_API bool ggml_v3_are_same_shape(const struct ggml_v3_tensor * t0, const struct ggml_v3_tensor * t1);
// use this to compute the memory overhead of a tensor
GGML_V3_API size_t ggml_v3_tensor_overhead(void);
// main
GGML_V3_API struct ggml_v3_context * ggml_v3_init(struct ggml_v3_init_params params);
GGML_V3_API void ggml_v3_free(struct ggml_v3_context * ctx);
GGML_V3_API size_t ggml_v3_used_mem(const struct ggml_v3_context * ctx);
GGML_V3_API size_t ggml_v3_set_scratch (struct ggml_v3_context * ctx, struct ggml_v3_scratch scratch);
GGML_V3_API bool ggml_v3_get_no_alloc(struct ggml_v3_context * ctx);
GGML_V3_API void ggml_v3_set_no_alloc(struct ggml_v3_context * ctx, bool no_alloc);
GGML_V3_API void * ggml_v3_get_mem_buffer (const struct ggml_v3_context * ctx);
GGML_V3_API size_t ggml_v3_get_mem_size (const struct ggml_v3_context * ctx);
GGML_V3_API size_t ggml_v3_get_max_tensor_size(const struct ggml_v3_context * ctx);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_tensor(
struct ggml_v3_context * ctx,
enum ggml_v3_type type,
int n_dims,
const int64_t *ne);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_tensor_1d(
struct ggml_v3_context * ctx,
enum ggml_v3_type type,
int64_t ne0);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_tensor_2d(
struct ggml_v3_context * ctx,
enum ggml_v3_type type,
int64_t ne0,
int64_t ne1);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_tensor_3d(
struct ggml_v3_context * ctx,
enum ggml_v3_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_tensor_4d(
struct ggml_v3_context * ctx,
enum ggml_v3_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_i32(struct ggml_v3_context * ctx, int32_t value);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_new_f32(struct ggml_v3_context * ctx, float value);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_dup_tensor (struct ggml_v3_context * ctx, const struct ggml_v3_tensor * src);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_view_tensor(struct ggml_v3_context * ctx, struct ggml_v3_tensor * src);
// Context tensor enumeration and lookup
GGML_V3_API struct ggml_v3_tensor * ggml_v3_get_first_tensor(const struct ggml_v3_context * ctx);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_get_next_tensor (const struct ggml_v3_context * ctx, struct ggml_v3_tensor * tensor);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_get_tensor(struct ggml_v3_context * ctx, const char * name);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_zero(struct ggml_v3_tensor * tensor);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_i32 (struct ggml_v3_tensor * tensor, int32_t value);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_f32 (struct ggml_v3_tensor * tensor, float value);
// Converts a flat index into coordinates
GGML_V3_API void ggml_v3_unravel_index(const struct ggml_v3_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_V3_API int32_t ggml_v3_get_i32_1d(const struct ggml_v3_tensor * tensor, int i);
GGML_V3_API void ggml_v3_set_i32_1d(const struct ggml_v3_tensor * tensor, int i, int32_t value);
GGML_V3_API int32_t ggml_v3_get_i32_nd(const struct ggml_v3_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_V3_API void ggml_v3_set_i32_nd(const struct ggml_v3_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_V3_API float ggml_v3_get_f32_1d(const struct ggml_v3_tensor * tensor, int i);
GGML_V3_API void ggml_v3_set_f32_1d(const struct ggml_v3_tensor * tensor, int i, float value);
GGML_V3_API float ggml_v3_get_f32_nd(const struct ggml_v3_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_V3_API void ggml_v3_set_f32_nd(const struct ggml_v3_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_V3_API void * ggml_v3_get_data (const struct ggml_v3_tensor * tensor);
GGML_V3_API float * ggml_v3_get_data_f32(const struct ggml_v3_tensor * tensor);
GGML_V3_API enum ggml_v3_unary_op ggml_v3_get_unary_op(const struct ggml_v3_tensor * tensor);
GGML_V3_API const char * ggml_v3_get_name (const struct ggml_v3_tensor * tensor);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_name ( struct ggml_v3_tensor * tensor, const char * name);
GGML_V3_ATTRIBUTE_FORMAT(2, 3)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_format_name( struct ggml_v3_tensor * tensor, const char * fmt, ...);
//
// operations on tensors with backpropagation
//
GGML_V3_API struct ggml_v3_tensor * ggml_v3_dup(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_dup_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add_cast(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
enum ggml_v3_type type);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add1(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add1_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// dst = a
// view(dst, nb1, nb2, nb3, offset) += b
// return dst
GGML_V3_API struct ggml_v3_tensor * ggml_v3_acc(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_acc_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sub(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sub_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_mul(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_mul_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_div(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_div_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sqr(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sqr_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sqrt(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sqrt_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_log(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_log_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// return scalar
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sum(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sum_rows(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// mean along rows
GGML_V3_API struct ggml_v3_tensor * ggml_v3_mean(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// argmax along rows
GGML_V3_API struct ggml_v3_tensor * ggml_v3_argmax(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
GGML_V3_API struct ggml_v3_tensor * ggml_v3_repeat(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// sums repetitions in a into shape of b
GGML_V3_API struct ggml_v3_tensor * ggml_v3_repeat_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// concat a and b on dim 2
// used in stable-diffusion
GGML_V3_API struct ggml_v3_tensor * ggml_v3_concat(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_abs(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_abs_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sgn(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_sgn_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_neg(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_neg_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_step(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_step_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_tanh(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_tanh_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_elu(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_elu_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_relu(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_leaky_relu(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a, float negative_slope, bool inplace);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_relu_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_gelu(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_gelu_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_gelu_quick(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_gelu_quick_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_silu(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_silu_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// a - x
// b - dy
GGML_V3_API struct ggml_v3_tensor * ggml_v3_silu_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// normalize along rows
GGML_V3_API struct ggml_v3_tensor * ggml_v3_norm(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float eps);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_norm_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float eps);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rms_norm(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float eps);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rms_norm_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float eps);
// group normalize along ne0*ne1*n_groups
// used in stable-diffusion
// TODO: eps is hardcoded to 1e-6 for now
GGML_V3_API struct ggml_v3_tensor * ggml_v3_group_norm(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_groups);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_group_norm_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_groups);
// a - x
// b - dy
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rms_norm_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
float eps);
// A: k columns, n rows => [ne03, ne02, n, k]
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
GGML_V3_API struct ggml_v3_tensor * ggml_v3_mul_mat(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// change the precision of a matrix multiplication
// set to GGML_V3_PREC_F32 for higher precision (useful for phi-2)
GGML_V3_API void ggml_v3_mul_mat_set_prec(
struct ggml_v3_tensor * a,
enum ggml_v3_prec prec);
// indirect matrix multiplication
// ggml_v3_mul_mat_id(ctx, as, ids, id, b) ~= ggml_v3_mul_mat(as[ids[id]], b)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_mul_mat_id(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * const as[],
int n_as,
struct ggml_v3_tensor * ids,
int id,
struct ggml_v3_tensor * b);
// A: m columns, n rows,
// B: p columns, n rows,
// result is m columns, p rows
GGML_V3_API struct ggml_v3_tensor * ggml_v3_out_prod(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
//
// operations on tensors without backpropagation
//
GGML_V3_API struct ggml_v3_tensor * ggml_v3_scale(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float s);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_scale_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float s);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_1d_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_2d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t nb1,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_set_2d_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
size_t nb1,
size_t offset);
// a -> b, return view(b)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cpy(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// make contiguous
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cont(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// make contiguous, with new shape
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cont_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cont_2d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cont_3d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cont_4d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_V3_API struct ggml_v3_tensor * ggml_v3_reshape(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_V3_API struct ggml_v3_tensor * ggml_v3_reshape_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_reshape_2d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_V3_API struct ggml_v3_tensor * ggml_v3_reshape_3d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_reshape_4d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// offset in bytes
GGML_V3_API struct ggml_v3_tensor * ggml_v3_view_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_view_2d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
size_t nb1, // row stride in bytes
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_view_3d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_view_4d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t nb3,
size_t offset);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_permute(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3);
// alias for ggml_v3_permute(ctx, a, 1, 0, 2, 3)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_transpose(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// supports 3D: a->ne[2] == b->ne[1]
GGML_V3_API struct ggml_v3_tensor * ggml_v3_get_rows(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_get_rows_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
struct ggml_v3_tensor * c);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_diag(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// set elements above the diagonal to -INF
GGML_V3_API struct ggml_v3_tensor * ggml_v3_diag_mask_inf(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_diag_mask_inf_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_past);
// set elements above the diagonal to 0
GGML_V3_API struct ggml_v3_tensor * ggml_v3_diag_mask_zero(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_diag_mask_zero_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_past);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_soft_max(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_soft_max_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a);
// fused soft_max(a*scale + mask)
// mask is optional
GGML_V3_API struct ggml_v3_tensor * ggml_v3_soft_max_ext(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * mask,
float scale);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_soft_max_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_soft_max_back_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// rotary position embedding
// if mode & 1 == 1, skip n_past elements (DEPRECATED)
// if mode & 2 == 1, GPT-NeoX style
// if mode & 4 == 1, ChatGLM style
//
// b is an int32 vector with size a->ne[2], it contains the positions
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rope(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int n_dims,
int mode,
int n_ctx);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rope_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int n_dims,
int mode,
int n_ctx);
// custom RoPE
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rope_custom(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rope_custom_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// compute correction dims for YaRN RoPE scaling
void ggml_v3_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// xPos RoPE, in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rope_xpos_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int n_dims,
float base,
bool down);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
GGML_V3_API struct ggml_v3_tensor * ggml_v3_rope_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down);
// alibi position embedding
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_alibi(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int n_past,
int n_head,
float bias_max);
// clamp
// in-place, returns view(a)
GGML_V3_API struct ggml_v3_tensor * ggml_v3_clamp(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
float min,
float max);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_im2col(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_conv_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int s0, // stride
int p0, // padding
int d0); // dilation
// conv_1d with padding = half
// alias for ggml_v3_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_V3_API struct ggml_v3_tensor* ggml_v3_conv_1d_ph(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int s,
int d);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_conv_transpose_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int s0,
int p0,
int d0);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_conv_2d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
// example:
// a: 16 16 3 768
// b: 1024 1024 3 1
// res: 64 64 768 1
// used in sam
GGML_V3_API struct ggml_v3_tensor * ggml_v3_conv_2d_sk_p0(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
// kernel size is a->ne[0] x a->ne[1]
// stride is 1
// padding is half
// example:
// a: 3 3 256 256
// b: 64 64 256 1
// res: 64 64 256 1
// used in sam
GGML_V3_API struct ggml_v3_tensor * ggml_v3_conv_2d_s1_ph(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_conv_transpose_2d_p0(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
int stride);
enum ggml_v3_op_pool {
GGML_V3_OP_POOL_MAX,
GGML_V3_OP_POOL_AVG,
GGML_V3_OP_POOL_COUNT,
};
GGML_V3_API struct ggml_v3_tensor * ggml_v3_pool_1d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
enum ggml_v3_op_pool op,
int k0, // kernel size
int s0, // stride
int p0); // padding
// the result will have 2*p0 padding for the first dimension
// and 2*p1 padding for the second dimension
GGML_V3_API struct ggml_v3_tensor * ggml_v3_pool_2d(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
enum ggml_v3_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1);
// nearest interpolate
// used in stable-diffusion
GGML_V3_API struct ggml_v3_tensor * ggml_v3_upscale(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int scale_factor);
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_V3_API struct ggml_v3_tensor * ggml_v3_pad(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int p0,
int p1,
int p2,
int p3);
// sort rows
enum ggml_v3_sort_order {
GGML_V3_SORT_ASC,
GGML_V3_SORT_DESC,
};
GGML_V3_API struct ggml_v3_tensor * ggml_v3_argsort(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
enum ggml_v3_sort_order order);
// top k elements per row
GGML_V3_API struct ggml_v3_tensor * ggml_v3_top_k(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int k);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_flash_attn(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * q,
struct ggml_v3_tensor * k,
struct ggml_v3_tensor * v,
bool masked);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_flash_attn_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * q,
struct ggml_v3_tensor * k,
struct ggml_v3_tensor * v,
struct ggml_v3_tensor * d,
bool masked);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_flash_ff(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b0,
struct ggml_v3_tensor * b1,
struct ggml_v3_tensor * c0,
struct ggml_v3_tensor * c1);
// partition into non-overlapping windows with padding if needed
// example:
// a: 768 64 64 1
// w: 14
// res: 768 14 14 25
// used in sam
GGML_V3_API struct ggml_v3_tensor * ggml_v3_win_part(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int w);
// reverse of ggml_v3_win_part
// used in sam
GGML_V3_API struct ggml_v3_tensor * ggml_v3_win_unpart(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int w0,
int h0,
int w);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_unary(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
enum ggml_v3_unary_op op);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_unary_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
enum ggml_v3_unary_op op);
// used in sam
GGML_V3_API struct ggml_v3_tensor * ggml_v3_get_rel_pos(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
int qh,
int kh);
// used in sam
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add_rel_pos(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * pw,
struct ggml_v3_tensor * ph);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_add_rel_pos_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * pw,
struct ggml_v3_tensor * ph);
// custom operators
typedef void (*ggml_v3_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_v3_binary_op_f32_t)(const int, float *, const float *, const float *);
typedef void (*ggml_v3_custom1_op_f32_t)(struct ggml_v3_tensor *, const struct ggml_v3_tensor *);
typedef void (*ggml_v3_custom2_op_f32_t)(struct ggml_v3_tensor *, const struct ggml_v3_tensor *, const struct ggml_v3_tensor *);
typedef void (*ggml_v3_custom3_op_f32_t)(struct ggml_v3_tensor *, const struct ggml_v3_tensor *, const struct ggml_v3_tensor *, const struct ggml_v3_tensor *);
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_unary_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
ggml_v3_unary_op_f32_t fun),
"use ggml_v3_map_custom1 instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_unary_inplace_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
ggml_v3_unary_op_f32_t fun),
"use ggml_v3_map_custom1_inplace instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_binary_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
ggml_v3_binary_op_f32_t fun),
"use ggml_v3_map_custom2 instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_binary_inplace_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
ggml_v3_binary_op_f32_t fun),
"use ggml_v3_map_custom2_inplace instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom1_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
ggml_v3_custom1_op_f32_t fun),
"use ggml_v3_map_custom1 instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom1_inplace_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
ggml_v3_custom1_op_f32_t fun),
"use ggml_v3_map_custom1_inplace instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom2_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
ggml_v3_custom2_op_f32_t fun),
"use ggml_v3_map_custom2 instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom2_inplace_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
ggml_v3_custom2_op_f32_t fun),
"use ggml_v3_map_custom2_inplace instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom3_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
struct ggml_v3_tensor * c,
ggml_v3_custom3_op_f32_t fun),
"use ggml_v3_map_custom3 instead");
GGML_V3_DEPRECATED(GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom3_inplace_f32(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
struct ggml_v3_tensor * c,
ggml_v3_custom3_op_f32_t fun),
"use ggml_v3_map_custom3_inplace instead");
// custom operators v2
typedef void (*ggml_v3_custom1_op_t)(struct ggml_v3_tensor * dst , const struct ggml_v3_tensor * a, int ith, int nth, void * userdata);
typedef void (*ggml_v3_custom2_op_t)(struct ggml_v3_tensor * dst , const struct ggml_v3_tensor * a, const struct ggml_v3_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_v3_custom3_op_t)(struct ggml_v3_tensor * dst , const struct ggml_v3_tensor * a, const struct ggml_v3_tensor * b, const struct ggml_v3_tensor * c, int ith, int nth, void * userdata);
#define GGML_V3_N_TASKS_MAX -1
GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom1(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
ggml_v3_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom1_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
ggml_v3_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom2(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
ggml_v3_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom2_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
ggml_v3_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom3(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
struct ggml_v3_tensor * c,
ggml_v3_custom3_op_t fun,
int n_tasks,
void * userdata);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_map_custom3_inplace(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
struct ggml_v3_tensor * c,
ggml_v3_custom3_op_t fun,
int n_tasks,
void * userdata);
// loss function
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cross_entropy_loss(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_cross_entropy_loss_back(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * a,
struct ggml_v3_tensor * b,
struct ggml_v3_tensor * c);
//
// automatic differentiation
//
GGML_V3_API void ggml_v3_set_param(
struct ggml_v3_context * ctx,
struct ggml_v3_tensor * tensor);
GGML_V3_API void ggml_v3_build_forward_expand (struct ggml_v3_cgraph * cgraph, struct ggml_v3_tensor * tensor);
GGML_V3_API void ggml_v3_build_backward_expand(struct ggml_v3_context * ctx, struct ggml_v3_cgraph * gf, struct ggml_v3_cgraph * gb, bool keep);
// graph allocation in a context
GGML_V3_API struct ggml_v3_cgraph * ggml_v3_new_graph (struct ggml_v3_context * ctx); // size = GGML_V3_DEFAULT_GRAPH_SIZE, grads = false
GGML_V3_API struct ggml_v3_cgraph * ggml_v3_new_graph_custom (struct ggml_v3_context * ctx, size_t size, bool grads);
GGML_V3_API struct ggml_v3_cgraph * ggml_v3_graph_dup (struct ggml_v3_context * ctx, struct ggml_v3_cgraph * cgraph);
GGML_V3_API struct ggml_v3_cgraph ggml_v3_graph_view (struct ggml_v3_cgraph * cgraph, int i0, int i1);
GGML_V3_API void ggml_v3_graph_cpy (struct ggml_v3_cgraph * src, struct ggml_v3_cgraph * dst);
GGML_V3_API void ggml_v3_graph_reset (struct ggml_v3_cgraph * cgraph); // zero grads
GGML_V3_API void ggml_v3_graph_clear (struct ggml_v3_cgraph * cgraph);
GGML_V3_API size_t ggml_v3_graph_overhead(void);
GGML_V3_API size_t ggml_v3_graph_overhead_custom(size_t size, bool grads);
// ggml_v3_graph_plan() has to be called before ggml_v3_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_V3_API struct ggml_v3_cplan ggml_v3_graph_plan (struct ggml_v3_cgraph * cgraph, int n_threads /*= GGML_V3_DEFAULT_N_THREADS*/);
GGML_V3_API int ggml_v3_graph_compute(struct ggml_v3_cgraph * cgraph, struct ggml_v3_cplan * cplan);
// same as ggml_v3_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_V3_API void ggml_v3_graph_compute_with_ctx(struct ggml_v3_context * ctx, struct ggml_v3_cgraph * cgraph, int n_threads);
GGML_V3_API struct ggml_v3_tensor * ggml_v3_graph_get_tensor(struct ggml_v3_cgraph * cgraph, const char * name);
GGML_V3_API void ggml_v3_graph_export(const struct ggml_v3_cgraph * cgraph, const char * fname);
GGML_V3_API struct ggml_v3_cgraph * ggml_v3_graph_import(const char * fname, struct ggml_v3_context ** ctx_data, struct ggml_v3_context ** ctx_eval);
// print info and performance information for the graph
GGML_V3_API void ggml_v3_graph_print(const struct ggml_v3_cgraph * cgraph);
// dump the graph into a file using the dot format
GGML_V3_API void ggml_v3_graph_dump_dot(const struct ggml_v3_cgraph * gb, const struct ggml_v3_cgraph * gf, const char * filename);
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_V3_API void ggml_v3_build_backward_gradient_checkpointing(
struct ggml_v3_context * ctx,
struct ggml_v3_cgraph * gf,
struct ggml_v3_cgraph * gb,
struct ggml_v3_cgraph * gb_tmp,
struct ggml_v3_tensor * * checkpoints,
int n_checkpoints);
//
// optimization
//
// optimization methods
enum ggml_v3_opt_type {
GGML_V3_OPT_ADAM,
GGML_V3_OPT_LBFGS,
};
// linesearch methods
enum ggml_v3_linesearch {
GGML_V3_LINESEARCH_DEFAULT = 1,
GGML_V3_LINESEARCH_BACKTRACKING_ARMIJO = 0,
GGML_V3_LINESEARCH_BACKTRACKING_WOLFE = 1,
GGML_V3_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};
// optimization return values
enum ggml_v3_opt_result {
GGML_V3_OPT_OK = 0,
GGML_V3_OPT_DID_NOT_CONVERGE,
GGML_V3_OPT_NO_CONTEXT,
GGML_V3_OPT_INVALID_WOLFE,
GGML_V3_OPT_FAIL,
GGML_V3_OPT_CANCEL,
GGML_V3_LINESEARCH_FAIL = -128,
GGML_V3_LINESEARCH_MINIMUM_STEP,
GGML_V3_LINESEARCH_MAXIMUM_STEP,
GGML_V3_LINESEARCH_MAXIMUM_ITERATIONS,
GGML_V3_LINESEARCH_INVALID_PARAMETERS,
};
typedef void (*ggml_v3_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
typedef void (*ggml_v3_log_callback)(enum ggml_v3_log_level level, const char * text, void * user_data);
// optimization parameters
//
// see ggml.c (ggml_v3_opt_default_params) for default values
//
struct ggml_v3_opt_params {
enum ggml_v3_opt_type type;
size_t graph_size;
int n_threads;
// delta-based convergence test
//
// if past == 0 - disabled
// if past > 0:
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
//
int past;
float delta;
// maximum number of iterations without improvement
//
// if 0 - disabled
// if > 0:
// assume convergence if no cost improvement in this number of iterations
//
int max_no_improvement;
bool print_forward_graph;
bool print_backward_graph;
int n_gradient_accumulation;
// ADAM parameters
struct {
int n_iter;
float sched; // schedule multiplier (fixed, decay or warmup)
float decay; // weight decay for AdamW, use 0.0f to disable
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
float alpha; // learning rate
float beta1;
float beta2;
float eps; // epsilon for numerical stability
float eps_f; // epsilon for convergence test
float eps_g; // epsilon for convergence test
float gclip; // gradient clipping
} adam;
// LBFGS parameters
struct {
int m; // number of corrections to approximate the inv. Hessian
int n_iter;
int max_linesearch;
float eps; // convergence tolerance
float ftol; // line search tolerance
float wolfe;
float min_step;
float max_step;
enum ggml_v3_linesearch linesearch;
} lbfgs;
};
struct ggml_v3_opt_context {
struct ggml_v3_context * ctx;
struct ggml_v3_opt_params params;
int iter;
int64_t nx; // number of parameter elements
bool just_initialized;
float loss_before;
float loss_after;
struct {
struct ggml_v3_tensor * g; // current gradient
struct ggml_v3_tensor * m; // first moment
struct ggml_v3_tensor * v; // second moment
struct ggml_v3_tensor * pf; // past function values
float fx_best;
float fx_prev;
int n_no_improvement;
} adam;
struct {
struct ggml_v3_tensor * x; // current parameters
struct ggml_v3_tensor * xp; // previous parameters
struct ggml_v3_tensor * g; // current gradient
struct ggml_v3_tensor * gp; // previous gradient
struct ggml_v3_tensor * d; // search direction
struct ggml_v3_tensor * pf; // past function values
struct ggml_v3_tensor * lmal; // the L-BFGS memory alpha
struct ggml_v3_tensor * lmys; // the L-BFGS memory ys
struct ggml_v3_tensor * lms; // the L-BFGS memory s
struct ggml_v3_tensor * lmy; // the L-BFGS memory y
float fx_best;
float step;
int j;
int k;
int end;
int n_no_improvement;
} lbfgs;
};
GGML_V3_API struct ggml_v3_opt_params ggml_v3_opt_default_params(enum ggml_v3_opt_type type);
// optimize the function defined by the tensor f
GGML_V3_API enum ggml_v3_opt_result ggml_v3_opt(
struct ggml_v3_context * ctx,
struct ggml_v3_opt_params params,
struct ggml_v3_tensor * f);
// initialize optimizer context
GGML_V3_API void ggml_v3_opt_init(
struct ggml_v3_context * ctx,
struct ggml_v3_opt_context * opt,
struct ggml_v3_opt_params params,
int64_t nx);
// continue optimizing the function defined by the tensor f
GGML_V3_API enum ggml_v3_opt_result ggml_v3_opt_resume(
struct ggml_v3_context * ctx,
struct ggml_v3_opt_context * opt,
struct ggml_v3_tensor * f);
// continue optimizing the function defined by the tensor f
GGML_V3_API enum ggml_v3_opt_result ggml_v3_opt_resume_g(
struct ggml_v3_context * ctx,
struct ggml_v3_opt_context * opt,
struct ggml_v3_tensor * f,
struct ggml_v3_cgraph * gf,
struct ggml_v3_cgraph * gb,
ggml_v3_opt_callback callback,
void * callback_data);
//
// quantization
//
// TODO: these would probably get removed in favor of the more general ggml_v3_quantize_chunk
GGML_V3_API size_t ggml_v3_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_iq2_xxs(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_iq2_xs (const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V3_API size_t ggml_v3_quantize_chunk(enum ggml_v3_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//
// Importance matrix
//
typedef void(*ggml_v3_collect_imatrix_t)(const struct ggml_v3_tensor * src0, const struct ggml_v3_tensor * src1);
GGML_V3_API void ggml_v3_set_imatrix_collection(ggml_v3_collect_imatrix_t imatrix_collect);
//
// gguf
//
enum gguf_v3_type {
GGUF_V3_TYPE_UINT8 = 0,
GGUF_V3_TYPE_INT8 = 1,
GGUF_V3_TYPE_UINT16 = 2,
GGUF_V3_TYPE_INT16 = 3,
GGUF_V3_TYPE_UINT32 = 4,
GGUF_V3_TYPE_INT32 = 5,
GGUF_V3_TYPE_FLOAT32 = 6,
GGUF_V3_TYPE_BOOL = 7,
GGUF_V3_TYPE_STRING = 8,
GGUF_V3_TYPE_ARRAY = 9,
GGUF_V3_TYPE_UINT64 = 10,
GGUF_V3_TYPE_INT64 = 11,
GGUF_V3_TYPE_FLOAT64 = 12,
GGUF_V3_TYPE_COUNT, // marks the end of the enum
};
struct gguf_v3_context;
struct gguf_v3_init_params {
bool no_alloc;
// if not NULL, create a ggml_v3_context and allocate the tensor data in it
struct ggml_v3_context ** ctx;
};
GGML_V3_API struct gguf_v3_context * gguf_v3_init_empty(void);
GGML_V3_API struct gguf_v3_context * gguf_v3_init_from_file(const char * fname, struct gguf_v3_init_params params);
//GGML_V3_API struct gguf_v3_context * gguf_v3_init_from_buffer(..);
GGML_V3_API void gguf_v3_free(struct gguf_v3_context * ctx);
GGML_V3_API const char * gguf_v3_type_name(enum gguf_v3_type type);
GGML_V3_API int gguf_v3_get_version (const struct gguf_v3_context * ctx);
GGML_V3_API size_t gguf_v3_get_alignment (const struct gguf_v3_context * ctx);
GGML_V3_API size_t gguf_v3_get_data_offset(const struct gguf_v3_context * ctx);
GGML_V3_API void * gguf_v3_get_data (const struct gguf_v3_context * ctx);
GGML_V3_API int gguf_v3_get_n_kv(const struct gguf_v3_context * ctx);
GGML_V3_API int gguf_v3_find_key(const struct gguf_v3_context * ctx, const char * key);
GGML_V3_API const char * gguf_v3_get_key (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API enum gguf_v3_type gguf_v3_get_kv_type (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API enum gguf_v3_type gguf_v3_get_arr_type(const struct gguf_v3_context * ctx, int key_id);
// will abort if the wrong type is used for the key
GGML_V3_API uint8_t gguf_v3_get_val_u8 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API int8_t gguf_v3_get_val_i8 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API uint16_t gguf_v3_get_val_u16 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API int16_t gguf_v3_get_val_i16 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API uint32_t gguf_v3_get_val_u32 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API int32_t gguf_v3_get_val_i32 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API float gguf_v3_get_val_f32 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API uint64_t gguf_v3_get_val_u64 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API int64_t gguf_v3_get_val_i64 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API double gguf_v3_get_val_f64 (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API bool gguf_v3_get_val_bool(const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API const char * gguf_v3_get_val_str (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API const void * gguf_v3_get_val_data(const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API int gguf_v3_get_arr_n (const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API const void * gguf_v3_get_arr_data(const struct gguf_v3_context * ctx, int key_id);
GGML_V3_API const char * gguf_v3_get_arr_str (const struct gguf_v3_context * ctx, int key_id, int i);
GGML_V3_API int gguf_v3_get_n_tensors (const struct gguf_v3_context * ctx);
GGML_V3_API int gguf_v3_find_tensor (const struct gguf_v3_context * ctx, const char * name);
GGML_V3_API size_t gguf_v3_get_tensor_offset(const struct gguf_v3_context * ctx, int i);
GGML_V3_API char * gguf_v3_get_tensor_name (const struct gguf_v3_context * ctx, int i);
GGML_V3_API enum ggml_v3_type gguf_v3_get_tensor_type (const struct gguf_v3_context * ctx, int i);
// overrides existing values or adds a new one
GGML_V3_API void gguf_v3_set_val_u8 (struct gguf_v3_context * ctx, const char * key, uint8_t val);
GGML_V3_API void gguf_v3_set_val_i8 (struct gguf_v3_context * ctx, const char * key, int8_t val);
GGML_V3_API void gguf_v3_set_val_u16 (struct gguf_v3_context * ctx, const char * key, uint16_t val);
GGML_V3_API void gguf_v3_set_val_i16 (struct gguf_v3_context * ctx, const char * key, int16_t val);
GGML_V3_API void gguf_v3_set_val_u32 (struct gguf_v3_context * ctx, const char * key, uint32_t val);
GGML_V3_API void gguf_v3_set_val_i32 (struct gguf_v3_context * ctx, const char * key, int32_t val);
GGML_V3_API void gguf_v3_set_val_f32 (struct gguf_v3_context * ctx, const char * key, float val);
GGML_V3_API void gguf_v3_set_val_u64 (struct gguf_v3_context * ctx, const char * key, uint64_t val);
GGML_V3_API void gguf_v3_set_val_i64 (struct gguf_v3_context * ctx, const char * key, int64_t val);
GGML_V3_API void gguf_v3_set_val_f64 (struct gguf_v3_context * ctx, const char * key, double val);
GGML_V3_API void gguf_v3_set_val_bool(struct gguf_v3_context * ctx, const char * key, bool val);
GGML_V3_API void gguf_v3_set_val_str (struct gguf_v3_context * ctx, const char * key, const char * val);
GGML_V3_API void gguf_v3_set_arr_data(struct gguf_v3_context * ctx, const char * key, enum gguf_v3_type type, const void * data, int n);
GGML_V3_API void gguf_v3_set_arr_str (struct gguf_v3_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_V3_API void gguf_v3_set_kv(struct gguf_v3_context * ctx, struct gguf_v3_context * src);
// manage tensor info
GGML_V3_API void gguf_v3_add_tensor(struct gguf_v3_context * ctx, const struct ggml_v3_tensor * tensor);
GGML_V3_API void gguf_v3_set_tensor_type(struct gguf_v3_context * ctx, const char * name, enum ggml_v3_type type);
GGML_V3_API void gguf_v3_set_tensor_data(struct gguf_v3_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_v3_context to a binary file in a single pass:
//
// gguf_v3_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_v3_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_v3_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_v3_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_V3_API void gguf_v3_write_to_file(const struct gguf_v3_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_V3_API size_t gguf_v3_get_meta_size(const struct gguf_v3_context * ctx);
GGML_V3_API void gguf_v3_get_meta_data(const struct gguf_v3_context * ctx, void * data);
//
// system info
//
GGML_V3_API int ggml_v3_cpu_has_avx (void);
GGML_V3_API int ggml_v3_cpu_has_avx_vnni (void);
GGML_V3_API int ggml_v3_cpu_has_avx2 (void);
GGML_V3_API int ggml_v3_cpu_has_avx512 (void);
GGML_V3_API int ggml_v3_cpu_has_avx512_vbmi(void);
GGML_V3_API int ggml_v3_cpu_has_avx512_vnni(void);
GGML_V3_API int ggml_v3_cpu_has_fma (void);
GGML_V3_API int ggml_v3_cpu_has_neon (void);
GGML_V3_API int ggml_v3_cpu_has_arm_fma (void);
GGML_V3_API int ggml_v3_cpu_has_metal (void);
GGML_V3_API int ggml_v3_cpu_has_f16c (void);
GGML_V3_API int ggml_v3_cpu_has_fp16_va (void);
GGML_V3_API int ggml_v3_cpu_has_wasm_simd (void);
GGML_V3_API int ggml_v3_cpu_has_blas (void);
GGML_V3_API int ggml_v3_cpu_has_cublas (void);
GGML_V3_API int ggml_v3_cpu_has_clblast (void);
GGML_V3_API int ggml_v3_cpu_has_gpublas (void);
GGML_V3_API int ggml_v3_cpu_has_sse3 (void);
GGML_V3_API int ggml_v3_cpu_has_ssse3 (void);
GGML_V3_API int ggml_v3_cpu_has_vsx (void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_V3_RESTRICT
#else
#define GGML_V3_RESTRICT restrict
#endif
typedef void (*ggml_v3_to_float_t) (const void * GGML_V3_RESTRICT x, float * GGML_V3_RESTRICT y, int k);
typedef void (*ggml_v3_from_float_t)(const float * GGML_V3_RESTRICT x, void * GGML_V3_RESTRICT y, int k);
typedef void (*ggml_v3_vec_dot_t) (const int n, float * GGML_V3_RESTRICT s, const void * GGML_V3_RESTRICT x, const void * GGML_V3_RESTRICT y);
typedef struct {
const char * type_name;
int blck_size;
size_t type_size;
bool is_quantized;
ggml_v3_to_float_t to_float;
ggml_v3_from_float_t from_float;
ggml_v3_from_float_t from_float_reference;
ggml_v3_vec_dot_t vec_dot;
enum ggml_v3_type vec_dot_type;
} ggml_v3_type_traits_t;
GGML_V3_API ggml_v3_type_traits_t ggml_v3_internal_get_type_traits(enum ggml_v3_type type);
//allocator stuff
GGML_V3_API struct ggml_v3_allocr * ggml_v3_allocr_new(void * data, size_t size, size_t alignment);
GGML_V3_API struct ggml_v3_allocr * ggml_v3_allocr_new_measure(size_t alignment);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_V3_API void ggml_v3_allocr_set_parse_seq(struct ggml_v3_allocr * alloc, const int * list, int n);
GGML_V3_API void ggml_v3_allocr_free(struct ggml_v3_allocr * alloc);
GGML_V3_API bool ggml_v3_allocr_is_measure(struct ggml_v3_allocr * alloc);
GGML_V3_API void ggml_v3_allocr_reset(struct ggml_v3_allocr * alloc);
GGML_V3_API void ggml_v3_allocr_alloc(struct ggml_v3_allocr * alloc, struct ggml_v3_tensor * tensor);
GGML_V3_API size_t ggml_v3_allocr_alloc_graph(struct ggml_v3_allocr * alloc, struct ggml_v3_cgraph * graph);
GGML_V3_API size_t ggml_v3_allocr_max_size(struct ggml_v3_allocr * alloc);
#define GGML_V3_GRAPH_HASHTABLE_SIZE 32771
#define GGML_V3_MAX_NODES 8192
#ifdef __cplusplus
}
#endif
|