File size: 24,583 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#ifndef LLAMA_V3_H
#define LLAMA_V3_H
#include "ggml_v3.h"
#ifdef GGML_USE_CUDA
#include "ggml_v3-cuda.h"
#define LLAMA_V3_MAX_DEVICES GGML_V3_CUDA_MAX_DEVICES
#else
#define LLAMA_V3_MAX_DEVICES 1
#endif // GGML_USE_CUDA
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_V3_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_V3_BUILD
# define LLAMA_V3_API __declspec(dllexport)
# else
# define LLAMA_V3_API __declspec(dllimport)
# endif
# else
# define LLAMA_V3_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_V3_API
#endif
#ifdef __GNUC__
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define DEPRECATED(func, hint) func
#endif
#define LLAMA_V3_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_V3_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_V3_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_V3_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_V3_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_V3_FILE_VERSION 3
#define LLAMA_V3_FILE_MAGIC LLAMA_V3_FILE_MAGIC_GGJT
#define LLAMA_V3_FILE_MAGIC_UNVERSIONED LLAMA_V3_FILE_MAGIC_GGML
#define LLAMA_V3_SESSION_MAGIC LLAMA_V3_FILE_MAGIC_GGSN
#define LLAMA_V3_SESSION_VERSION 1
#define LLAMA_V3_DEFAULT_SEED 0xFFFFFFFF
#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_V3_SUPPORTS_GPU_OFFLOAD
#endif
#ifndef LLAMA_V3_DEFAULT_RMS_EPS
#define LLAMA_V3_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_v3_model;
struct llama_v3_context;
typedef int llama_v3_token;
typedef struct llama_v3_token_data {
llama_v3_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_v3_token_data;
typedef struct llama_v3_token_data_array {
llama_v3_token_data * data;
size_t size;
bool sorted;
} llama_v3_token_data_array;
typedef void (*llama_v3_progress_callback)(float progress, void *ctx);
enum llama_v3_log_level {
LLAMA_V3_LOG_LEVEL_ERROR = 2,
LLAMA_V3_LOG_LEVEL_WARN = 3,
LLAMA_V3_LOG_LEVEL_INFO = 4
};
// Signature for logging events
// Note that text includes the new line character at the end for most events.
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
// if it exists.
// It might not exist for progress report where '.' is output repeatedly.
typedef void (*llama_v3_log_callback)(enum llama_v3_log_level level, const char * text, void * user_data);
struct llama_v3_context_params {
uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_V3_MAX_DEVICES)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency
float rope_freq_scale; // RoPE frequency scaling factor
// called with a progress value between 0 and 1, pass NULL to disable
llama_v3_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_v3_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
};
// model file types
enum llama_v3_ftype {
LLAMA_V3_FTYPE_ALL_F32 = 0,
LLAMA_V3_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_V3_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_V3_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_V3_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_V3_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters
typedef struct llama_v3_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_v3_ftype ftype; // quantize to this llama_v3_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_v3_model_quantize_params;
// grammar types
struct llama_v3_grammar;
// grammar element type
enum llama_v3_gretype {
// end of rule definition
LLAMA_V3_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_V3_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_V3_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_V3_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_V3_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_V3_GRETYPE_CHAR or LLAMA_V3_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_V3_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_V3_GRETYPE_CHAR or
// LLAMA_V3_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_V3_GRETYPE_CHAR_ALT = 6,
};
typedef struct llama_v3_grammar_element {
enum llama_v3_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_v3_grammar_element;
// performance timing information
struct llama_v3_timings {
double t_start_ms;
double t_end_ms;
double t_load_ms;
double t_sample_ms;
double t_p_eval_ms;
double t_eval_ms;
int32_t n_sample;
int32_t n_p_eval;
int32_t n_eval;
};
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_V3_API void llama_v3_log_set(llama_v3_log_callback log_callback, void * user_data);
LLAMA_V3_API int llama_v3_max_devices();
LLAMA_V3_API struct llama_v3_context_params llama_v3_context_default_params();
LLAMA_V3_API struct llama_v3_model_quantize_params llama_v3_model_quantize_default_params();
LLAMA_V3_API bool llama_v3_mmap_supported();
LLAMA_V3_API bool llama_v3_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_V3_API void llama_v3_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_V3_API void llama_v3_backend_free();
LLAMA_V3_API int64_t llama_v3_time_us();
LLAMA_V3_API struct llama_v3_model * llama_v3_load_model_from_file(
const char * path_model,
struct llama_v3_context_params params);
LLAMA_V3_API void llama_v3_free_model(struct llama_v3_model * model);
LLAMA_V3_API struct llama_v3_context * llama_v3_new_context_with_model(
struct llama_v3_model * model,
struct llama_v3_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_V3_API struct llama_v3_context * llama_v3_init_from_file(
const char * path_model,
struct llama_v3_context_params params);
// Frees all allocated memory
LLAMA_V3_API void llama_v3_free(struct llama_v3_context * ctx);
// Returns 0 on success
LLAMA_V3_API int llama_v3_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_v3_model_quantize_params * params);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_V3_API int llama_v3_apply_lora_from_file(
struct llama_v3_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads);
LLAMA_V3_API int llama_v3_model_apply_lora_from_file(
const struct llama_v3_model * model,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_V3_API int llama_v3_get_kv_cache_token_count(const struct llama_v3_context * ctx);
// Sets the current rng seed.
LLAMA_V3_API void llama_v3_set_rng_seed(struct llama_v3_context * ctx, uint32_t seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_V3_API size_t llama_v3_get_state_size(const struct llama_v3_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_V3_API size_t llama_v3_copy_state_data(struct llama_v3_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_V3_API size_t llama_v3_set_state_data(struct llama_v3_context * ctx, uint8_t * src);
// Save/load session file
LLAMA_V3_API bool llama_v3_load_session_file(struct llama_v3_context * ctx, const char * path_session, llama_v3_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_V3_API bool llama_v3_save_session_file(struct llama_v3_context * ctx, const char * path_session, const llama_v3_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_V3_API int llama_v3_eval(
struct llama_v3_context * ctx,
const llama_v3_token * tokens,
int n_tokens,
int n_past,
int n_threads);
// Same as llama_v3_eval, but use float matrix input directly.
LLAMA_V3_API int llama_v3_eval_embd(
struct llama_v3_context * ctx,
const float * embd,
int n_tokens,
int n_past,
int n_threads);
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_V3_API int llama_v3_eval_export(struct llama_v3_context * ctx, const char * fname);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_V3_API int llama_v3_tokenize(
struct llama_v3_context * ctx,
const char * text,
llama_v3_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_V3_API int llama_v3_tokenize_with_model(
const struct llama_v3_model * model,
const char * text,
llama_v3_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_V3_API int llama_v3_n_vocab(const struct llama_v3_context * ctx);
LLAMA_V3_API int llama_v3_n_ctx (const struct llama_v3_context * ctx);
LLAMA_V3_API int llama_v3_n_embd (const struct llama_v3_context * ctx);
LLAMA_V3_API int llama_v3_n_vocab_from_model(const struct llama_v3_model * model);
LLAMA_V3_API int llama_v3_n_ctx_from_model (const struct llama_v3_model * model);
LLAMA_V3_API int llama_v3_n_embd_from_model (const struct llama_v3_model * model);
LLAMA_V3_API int llama_v3_model_type(const struct llama_v3_model * model, char * buf, size_t buf_size);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_V3_API int llama_v3_get_vocab(
const struct llama_v3_context * ctx,
const char * * strings,
float * scores,
int capacity);
LLAMA_V3_API int llama_v3_get_vocab_from_model(
const struct llama_v3_model * model,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_v3_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_V3_API float * llama_v3_get_logits(struct llama_v3_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_V3_API float * llama_v3_get_embeddings(struct llama_v3_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_V3_API const char * llama_v3_token_to_str(
const struct llama_v3_context * ctx,
llama_v3_token token);
LLAMA_V3_API const char * llama_v3_token_to_str_with_model(
const struct llama_v3_model * model,
llama_v3_token token);
// Special tokens
LLAMA_V3_API llama_v3_token llama_v3_token_bos(); // beginning-of-sentence
LLAMA_V3_API llama_v3_token llama_v3_token_eos(); // end-of-sentence
LLAMA_V3_API llama_v3_token llama_v3_token_nl(); // next-line
// Grammar
//
LLAMA_V3_API struct llama_v3_grammar * llama_v3_grammar_init(
const llama_v3_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
LLAMA_V3_API void llama_v3_grammar_free(struct llama_v3_grammar * grammar);
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_V3_API void llama_v3_sample_repetition_penalty(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const llama_v3_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_V3_API void llama_v3_sample_frequency_and_presence_penalties(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const llama_v3_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_v3_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_V3_API void llama_v3_sample_classifier_free_guidance(
struct llama_v3_context * ctx,
llama_v3_token_data_array * candidates,
struct llama_v3_context * guidance_ctx,
float scale);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_V3_API void llama_v3_sample_softmax(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_V3_API void llama_v3_sample_top_k(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_V3_API void llama_v3_sample_top_p(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_V3_API void llama_v3_sample_tail_free(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_V3_API void llama_v3_sample_typical(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float p, size_t min_keep);
LLAMA_V3_API void llama_v3_sample_temperature(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float temp);
/// @details Apply constraints from grammar
LLAMA_V3_API void llama_v3_sample_grammar(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const struct llama_v3_grammar * grammar);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_v3_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_V3_API llama_v3_token llama_v3_sample_token_mirostat(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_v3_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_V3_API llama_v3_token llama_v3_sample_token_mirostat_v2(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_V3_API llama_v3_token llama_v3_sample_token_greedy(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_V3_API llama_v3_token llama_v3_sample_token(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates);
/// @details Accepts the sampled token into the grammar
LLAMA_V3_API void llama_v3_grammar_accept_token(struct llama_v3_context * ctx, struct llama_v3_grammar * grammar, llama_v3_token token);
// Performance information
LLAMA_V3_API struct llama_v3_timings llama_v3_get_timings(struct llama_v3_context * ctx);
LLAMA_V3_API void llama_v3_print_timings(struct llama_v3_context * ctx);
LLAMA_V3_API void llama_v3_reset_timings(struct llama_v3_context * ctx);
// Print system information
LLAMA_V3_API const char * llama_v3_print_system_info(void);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_V3_API_INTERNAL
#include <vector>
#include <string>
struct ggml_v3_tensor;
const std::vector<std::pair<std::string, struct ggml_v3_tensor *>>& llama_v3_internal_get_tensor_map(struct llama_v3_context * ctx);
#endif
#endif // LLAMA_V3_H
|