File size: 38,555 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
#ifndef __PMI_HPP__
#define __PMI_HPP__
#include "ggml_extend.hpp"
#include "clip.hpp"
#include "lora.hpp"
struct FuseBlock : public GGMLBlock {
// network hparams
int in_dim;
int out_dim;
int hidden_dim;
bool use_residue;
public:
FuseBlock(int i_d, int o_d, int h_d, bool use_residue = true)
: in_dim(i_d), out_dim(o_d), hidden_dim(h_d), use_residue(use_residue) {
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(in_dim, hidden_dim, true));
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_dim, out_dim, true));
blocks["layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(in_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]);
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layernorm"]);
struct ggml_tensor* r = x;
// x = ggml_nn_layer_norm(ctx, x, ln_w, ln_b);
x = layer_norm->forward(ctx, x);
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
x = fc1->forward(ctx, x);
x = ggml_gelu_inplace(ctx, x);
x = fc2->forward(ctx, x);
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
if (use_residue)
x = ggml_add(ctx, x, r);
return x;
}
};
/*
class QFormerPerceiver(nn.Module):
def __init__(self, id_embeddings_dim, cross_attention_dim, num_tokens, embedding_dim=1024, use_residual=True, ratio=4):
super().__init__()
self.num_tokens = num_tokens
self.cross_attention_dim = cross_attention_dim
self.use_residual = use_residual
print(cross_attention_dim*num_tokens)
self.token_proj = nn.Sequential(
nn.Linear(id_embeddings_dim, id_embeddings_dim*ratio),
nn.GELU(),
nn.Linear(id_embeddings_dim*ratio, cross_attention_dim*num_tokens),
)
self.token_norm = nn.LayerNorm(cross_attention_dim)
self.perceiver_resampler = FacePerceiverResampler(
dim=cross_attention_dim,
depth=4,
dim_head=128,
heads=cross_attention_dim // 128,
embedding_dim=embedding_dim,
output_dim=cross_attention_dim,
ff_mult=4,
)
def forward(self, x, last_hidden_state):
x = self.token_proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.token_norm(x) # cls token
out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens
if self.use_residual: # TODO: if use_residual is not true
out = x + 1.0 * out
return out
*/
struct PMFeedForward : public GGMLBlock {
// network hparams
int dim;
public:
PMFeedForward(int d, int multi = 4)
: dim(d) {
int inner_dim = dim * multi;
blocks["0"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["1"] = std::shared_ptr<GGMLBlock>(new Mlp(dim, inner_dim, dim, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x) {
auto norm = std::dynamic_pointer_cast<LayerNorm>(blocks["0"]);
auto ff = std::dynamic_pointer_cast<Mlp>(blocks["1"]);
x = norm->forward(ctx, x);
x = ff->forward(ctx, x);
return x;
}
};
struct PerceiverAttention : public GGMLBlock {
// network hparams
float scale; // = dim_head**-0.5
int dim_head; // = dim_head
int heads; // = heads
public:
PerceiverAttention(int dim, int dim_h = 64, int h = 8)
: scale(powf(dim_h, -0.5)), dim_head(dim_h), heads(h) {
int inner_dim = dim_head * heads;
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["to_q"] = std::shared_ptr<GGMLBlock>(new Linear(dim, inner_dim, false));
blocks["to_kv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, inner_dim * 2, false));
blocks["to_out"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim, false));
}
struct ggml_tensor* reshape_tensor(struct ggml_context* ctx,
struct ggml_tensor* x,
int heads) {
int64_t ne[4];
for (int i = 0; i < 4; ++i)
ne[i] = x->ne[i];
// print_ggml_tensor(x, true, "PerceiverAttention reshape x 0: ");
// printf("heads = %d \n", heads);
// x = ggml_view_4d(ctx, x, x->ne[0], x->ne[1], heads, x->ne[2]/heads,
// x->nb[1], x->nb[2], x->nb[3], 0);
x = ggml_reshape_4d(ctx, x, x->ne[0] / heads, heads, x->ne[1], x->ne[2]);
// x = ggml_view_4d(ctx, x, x->ne[0]/heads, heads, x->ne[1], x->ne[2],
// x->nb[1], x->nb[2], x->nb[3], 0);
// x = ggml_cont(ctx, x);
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3));
// print_ggml_tensor(x, true, "PerceiverAttention reshape x 1: ");
// x = ggml_reshape_4d(ctx, x, ne[0], heads, ne[1], ne[2]/heads);
return x;
}
std::vector<struct ggml_tensor*> chunk_half(struct ggml_context* ctx,
struct ggml_tensor* x) {
auto tlo = ggml_view_4d(ctx, x, x->ne[0] / 2, x->ne[1], x->ne[2], x->ne[3], x->nb[1], x->nb[2], x->nb[3], 0);
auto tli = ggml_view_4d(ctx, x, x->ne[0] / 2, x->ne[1], x->ne[2], x->ne[3], x->nb[1], x->nb[2], x->nb[3], x->nb[0] * x->ne[0] / 2);
return {ggml_cont(ctx, tlo),
ggml_cont(ctx, tli)};
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* latents) {
// x (torch.Tensor): image features
// shape (b, n1, D)
// latent (torch.Tensor): latent features
// shape (b, n2, D)
int64_t ne[4];
for (int i = 0; i < 4; ++i)
ne[i] = latents->ne[i];
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]);
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]);
x = norm1->forward(ctx, x);
latents = norm2->forward(ctx, latents);
auto to_q = std::dynamic_pointer_cast<Linear>(blocks["to_q"]);
auto q = to_q->forward(ctx, latents);
auto kv_input = ggml_concat(ctx, x, latents, 1);
auto to_kv = std::dynamic_pointer_cast<Linear>(blocks["to_kv"]);
auto kv = to_kv->forward(ctx, kv_input);
auto k = ggml_view_4d(ctx, kv, kv->ne[0] / 2, kv->ne[1], kv->ne[2], kv->ne[3], kv->nb[1] / 2, kv->nb[2] / 2, kv->nb[3] / 2, 0);
auto v = ggml_view_4d(ctx, kv, kv->ne[0] / 2, kv->ne[1], kv->ne[2], kv->ne[3], kv->nb[1] / 2, kv->nb[2] / 2, kv->nb[3] / 2, kv->nb[0] * (kv->ne[0] / 2));
k = ggml_cont(ctx, k);
v = ggml_cont(ctx, v);
q = reshape_tensor(ctx, q, heads);
k = reshape_tensor(ctx, k, heads);
v = reshape_tensor(ctx, v, heads);
scale = 1.f / sqrt(sqrt((float)dim_head));
k = ggml_scale_inplace(ctx, k, scale);
q = ggml_scale_inplace(ctx, q, scale);
// auto weight = ggml_mul_mat(ctx, q, k);
auto weight = ggml_mul_mat(ctx, k, q); // NOTE order of mul is opposite to pytorch
// GGML's softmax() is equivalent to pytorch's softmax(x, dim=-1)
// in this case, dimension along which Softmax will be computed is the last dim
// in torch and the first dim in GGML, consistent with the convention that pytorch's
// last dimension (varying most rapidly) corresponds to GGML's first (varying most rapidly).
// weight = ggml_soft_max(ctx, weight);
weight = ggml_soft_max_inplace(ctx, weight);
v = ggml_cont(ctx, ggml_transpose(ctx, v));
// auto out = ggml_mul_mat(ctx, weight, v);
auto out = ggml_mul_mat(ctx, v, weight); // NOTE order of mul is opposite to pytorch
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3));
out = ggml_reshape_3d(ctx, out, ne[0], ne[1], ggml_nelements(out) / (ne[0] * ne[1]));
auto to_out = std::dynamic_pointer_cast<Linear>(blocks["to_out"]);
out = to_out->forward(ctx, out);
return out;
}
};
struct FacePerceiverResampler : public GGMLBlock {
// network hparams
int depth;
public:
FacePerceiverResampler(int dim = 768,
int d = 4,
int dim_head = 64,
int heads = 16,
int embedding_dim = 1280,
int output_dim = 768,
int ff_mult = 4)
: depth(d) {
blocks["proj_in"] = std::shared_ptr<GGMLBlock>(new Linear(embedding_dim, dim, true));
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Linear(dim, output_dim, true));
blocks["norm_out"] = std::shared_ptr<GGMLBlock>(new LayerNorm(output_dim));
for (int i = 0; i < depth; i++) {
std::string name = "layers." + std::to_string(i) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(new PerceiverAttention(dim, dim_head, heads));
name = "layers." + std::to_string(i) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(new PMFeedForward(dim, ff_mult));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* latents,
struct ggml_tensor* x) {
// x: [N, channels, h, w]
auto proj_in = std::dynamic_pointer_cast<Linear>(blocks["proj_in"]);
auto proj_out = std::dynamic_pointer_cast<Linear>(blocks["proj_out"]);
auto norm_out = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_out"]);
x = proj_in->forward(ctx, x);
for (int i = 0; i < depth; i++) {
std::string name = "layers." + std::to_string(i) + ".0";
auto attn = std::dynamic_pointer_cast<PerceiverAttention>(blocks[name]);
name = "layers." + std::to_string(i) + ".1";
auto ff = std::dynamic_pointer_cast<PMFeedForward>(blocks[name]);
auto t = attn->forward(ctx, x, latents);
latents = ggml_add(ctx, t, latents);
t = ff->forward(ctx, latents);
latents = ggml_add(ctx, t, latents);
}
latents = proj_out->forward(ctx, latents);
latents = norm_out->forward(ctx, latents);
return latents;
}
};
struct QFormerPerceiver : public GGMLBlock {
// network hparams
int num_tokens;
int cross_attention_dim;
bool use_residul;
public:
QFormerPerceiver(int id_embeddings_dim, int cross_attention_d, int num_t, int embedding_dim = 1024, bool use_r = true, int ratio = 4)
: cross_attention_dim(cross_attention_d), num_tokens(num_t), use_residul(use_r) {
blocks["token_proj"] = std::shared_ptr<GGMLBlock>(new Mlp(id_embeddings_dim,
id_embeddings_dim * ratio,
cross_attention_dim * num_tokens,
true));
blocks["token_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(cross_attention_d));
blocks["perceiver_resampler"] = std::shared_ptr<GGMLBlock>(new FacePerceiverResampler(
cross_attention_dim,
4,
128,
cross_attention_dim / 128,
embedding_dim,
cross_attention_dim,
4));
}
/*
def forward(self, x, last_hidden_state):
x = self.token_proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.token_norm(x) # cls token
out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens
if self.use_residual: # TODO: if use_residual is not true
out = x + 1.0 * out
return out
*/
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* last_hidden_state) {
// x: [N, channels, h, w]
auto token_proj = std::dynamic_pointer_cast<Mlp>(blocks["token_proj"]);
auto token_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["token_norm"]);
auto perceiver_resampler = std::dynamic_pointer_cast<FacePerceiverResampler>(blocks["perceiver_resampler"]);
x = token_proj->forward(ctx, x);
int64_t nel = ggml_nelements(x);
x = ggml_reshape_3d(ctx, x, cross_attention_dim, num_tokens, nel / (cross_attention_dim * num_tokens));
x = token_norm->forward(ctx, x);
struct ggml_tensor* out = perceiver_resampler->forward(ctx, x, last_hidden_state);
if (use_residul)
out = ggml_add(ctx, x, out);
return out;
}
};
/*
class FacePerceiverResampler(torch.nn.Module):
def __init__(
self,
*,
dim=768,
depth=4,
dim_head=64,
heads=16,
embedding_dim=1280,
output_dim=768,
ff_mult=4,
):
super().__init__()
self.proj_in = torch.nn.Linear(embedding_dim, dim)
self.proj_out = torch.nn.Linear(dim, output_dim)
self.norm_out = torch.nn.LayerNorm(output_dim)
self.layers = torch.nn.ModuleList([])
for _ in range(depth):
self.layers.append(
torch.nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, latents, x):
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
*/
/*
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
*/
struct FuseModule : public GGMLBlock {
// network hparams
int embed_dim;
public:
FuseModule(int imb_d)
: embed_dim(imb_d) {
blocks["mlp1"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d * 2, imb_d, imb_d, false));
blocks["mlp2"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d, imb_d, imb_d, true));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(embed_dim));
}
struct ggml_tensor* fuse_fn(struct ggml_context* ctx,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds) {
auto mlp1 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp1"]);
auto mlp2 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp2"]);
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm"]);
// print_ggml_tensor(id_embeds, true, "Fuseblock id_embeds: ");
// print_ggml_tensor(prompt_embeds, true, "Fuseblock prompt_embeds: ");
// auto prompt_embeds0 = ggml_cont(ctx, ggml_permute(ctx, prompt_embeds, 2, 0, 1, 3));
// auto id_embeds0 = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
// print_ggml_tensor(id_embeds0, true, "Fuseblock id_embeds0: ");
// print_ggml_tensor(prompt_embeds0, true, "Fuseblock prompt_embeds0: ");
// concat is along dim 2
// auto stacked_id_embeds = ggml_concat(ctx, prompt_embeds0, id_embeds0, 2);
auto stacked_id_embeds = ggml_concat(ctx, prompt_embeds, id_embeds, 0);
// print_ggml_tensor(stacked_id_embeds, true, "Fuseblock stacked_id_embeds 0: ");
// stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 1, 2, 0, 3));
// print_ggml_tensor(stacked_id_embeds, true, "Fuseblock stacked_id_embeds 1: ");
// stacked_id_embeds = mlp1.forward(ctx, stacked_id_embeds);
// stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds);
// stacked_id_embeds = mlp2.forward(ctx, stacked_id_embeds);
// stacked_id_embeds = ggml_nn_layer_norm(ctx, stacked_id_embeds, ln_w, ln_b);
stacked_id_embeds = mlp1->forward(ctx, stacked_id_embeds);
stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds);
stacked_id_embeds = mlp2->forward(ctx, stacked_id_embeds);
stacked_id_embeds = layer_norm->forward(ctx, stacked_id_embeds);
// print_ggml_tensor(stacked_id_embeds, true, "Fuseblock stacked_id_embeds 1: ");
return stacked_id_embeds;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
struct ggml_tensor* valid_id_embeds = id_embeds;
// # slice out the image token embeddings
// print_ggml_tensor(class_tokens_mask_pos, false);
ggml_set_name(class_tokens_mask_pos, "class_tokens_mask_pos");
ggml_set_name(prompt_embeds, "prompt_embeds");
// print_ggml_tensor(valid_id_embeds, true, "valid_id_embeds");
// print_ggml_tensor(class_tokens_mask_pos, true, "class_tokens_mask_pos");
struct ggml_tensor* image_token_embeds = ggml_get_rows(ctx, prompt_embeds, class_tokens_mask_pos);
ggml_set_name(image_token_embeds, "image_token_embeds");
valid_id_embeds = ggml_reshape_2d(ctx, valid_id_embeds, valid_id_embeds->ne[0],
ggml_nelements(valid_id_embeds) / valid_id_embeds->ne[0]);
struct ggml_tensor* stacked_id_embeds = fuse_fn(ctx, image_token_embeds, valid_id_embeds);
// stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 0, 2, 1, 3));
// print_ggml_tensor(stacked_id_embeds, true, "AA stacked_id_embeds");
// print_ggml_tensor(left, true, "AA left");
// print_ggml_tensor(right, true, "AA right");
if (left && right) {
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 1);
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 1);
} else if (left) {
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 1);
} else if (right) {
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 1);
}
// print_ggml_tensor(stacked_id_embeds, true, "BB stacked_id_embeds");
// stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 0, 2, 1, 3));
// print_ggml_tensor(stacked_id_embeds, true, "CC stacked_id_embeds");
class_tokens_mask = ggml_cont(ctx, ggml_transpose(ctx, class_tokens_mask));
class_tokens_mask = ggml_repeat(ctx, class_tokens_mask, prompt_embeds);
prompt_embeds = ggml_mul(ctx, prompt_embeds, class_tokens_mask);
struct ggml_tensor* updated_prompt_embeds = ggml_add(ctx, prompt_embeds, stacked_id_embeds);
ggml_set_name(updated_prompt_embeds, "updated_prompt_embeds");
// print_ggml_tensor(updated_prompt_embeds, true, "updated_prompt_embeds: ");
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection {
PhotoMakerIDEncoderBlock()
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14) {
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false));
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]);
auto visual_projection_2 = std::dynamic_pointer_cast<Linear>(blocks["visual_projection_2"]);
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]);
struct ggml_tensor* shared_id_embeds = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* id_embeds = visual_projection->forward(ctx, shared_id_embeds); // [N, proj_dim(768)]
struct ggml_tensor* id_embeds_2 = visual_projection_2->forward(ctx, shared_id_embeds); // [N, 1280]
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
id_embeds_2 = ggml_cont(ctx, ggml_permute(ctx, id_embeds_2, 2, 0, 1, 3));
id_embeds = ggml_concat(ctx, id_embeds, id_embeds_2, 2); // [batch_size, seq_length, 1, 2048] check whether concat at dim 2 is right
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 1, 2, 0, 3));
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx,
prompt_embeds,
id_embeds,
class_tokens_mask,
class_tokens_mask_pos,
left, right);
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock : public CLIPVisionModelProjection {
int cross_attention_dim;
int num_tokens;
PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock(int id_embeddings_dim = 512)
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14),
cross_attention_dim(2048),
num_tokens(2) {
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false));
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048));
/*
cross_attention_dim = 2048
# projection
self.num_tokens = 2
self.cross_attention_dim = cross_attention_dim
self.qformer_perceiver = QFormerPerceiver(
id_embeddings_dim,
cross_attention_dim,
self.num_tokens,
)*/
blocks["qformer_perceiver"] = std::shared_ptr<GGMLBlock>(new QFormerPerceiver(id_embeddings_dim,
cross_attention_dim,
num_tokens));
}
/*
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds):
b, num_inputs, c, h, w = id_pixel_values.shape
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
last_hidden_state = self.vision_model(id_pixel_values)[0]
id_embeds = id_embeds.view(b * num_inputs, -1)
id_embeds = self.qformer_perceiver(id_embeds, last_hidden_state)
id_embeds = id_embeds.view(b, num_inputs, self.num_tokens, -1)
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
*/
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* id_embeds,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]);
auto qformer_perceiver = std::dynamic_pointer_cast<QFormerPerceiver>(blocks["qformer_perceiver"]);
// struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values, false); // [N, hidden_size]
id_embeds = qformer_perceiver->forward(ctx, id_embeds, last_hidden_state);
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx,
prompt_embeds,
id_embeds,
class_tokens_mask,
class_tokens_mask_pos,
left, right);
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoder : public GGMLRunner {
public:
SDVersion version = VERSION_SDXL;
PMVersion pm_version = PM_VERSION_1;
PhotoMakerIDEncoderBlock id_encoder;
PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock id_encoder2;
float style_strength;
std::vector<float> ctm;
std::vector<ggml_fp16_t> ctmf16;
std::vector<int> ctmpos;
std::vector<ggml_fp16_t> zeros_left_16;
std::vector<float> zeros_left;
std::vector<ggml_fp16_t> zeros_right_16;
std::vector<float> zeros_right;
public:
PhotoMakerIDEncoder(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix, SDVersion version = VERSION_SDXL, PMVersion pm_v = PM_VERSION_1, float sty = 20.f)
: GGMLRunner(backend),
version(version),
pm_version(pm_v),
style_strength(sty) {
if (pm_version == PM_VERSION_1) {
id_encoder.init(params_ctx, tensor_types, prefix);
} else if (pm_version == PM_VERSION_2) {
id_encoder2.init(params_ctx, tensor_types, prefix);
}
}
std::string get_desc() {
return "pmid";
}
PMVersion get_version() const {
return pm_version;
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
if (pm_version == PM_VERSION_1)
id_encoder.get_param_tensors(tensors, prefix);
else if (pm_version == PM_VERSION_2)
id_encoder2.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph( // struct ggml_allocr* allocr,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
std::vector<bool>& class_tokens_mask,
struct ggml_tensor* id_embeds) {
ctm.clear();
ctmf16.clear();
ctmpos.clear();
zeros_left.clear();
zeros_left_16.clear();
zeros_right.clear();
zeros_right_16.clear();
ggml_context* ctx0 = compute_ctx;
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
int64_t hidden_size = prompt_embeds->ne[0];
int64_t seq_length = prompt_embeds->ne[1];
ggml_type type = GGML_TYPE_F32;
struct ggml_tensor* class_tokens_mask_d = ggml_new_tensor_1d(ctx0, type, class_tokens_mask.size());
struct ggml_tensor* id_pixel_values_d = to_backend(id_pixel_values);
struct ggml_tensor* prompt_embeds_d = to_backend(prompt_embeds);
struct ggml_tensor* id_embeds_d = to_backend(id_embeds);
struct ggml_tensor* left = NULL;
struct ggml_tensor* right = NULL;
for (int i = 0; i < class_tokens_mask.size(); i++) {
if (class_tokens_mask[i]) {
// printf(" 1,");
ctm.push_back(0.f); // here use 0.f instead of 1.f to make a scale mask
ctmf16.push_back(ggml_fp32_to_fp16(0.f)); // here use 0.f instead of 1.f to make a scale mask
ctmpos.push_back(i);
} else {
// printf(" 0,");
ctm.push_back(1.f); // here use 1.f instead of 0.f to make a scale mask
ctmf16.push_back(ggml_fp32_to_fp16(1.f)); // here use 0.f instead of 1.f to make a scale mask
}
}
// printf("\n");
if (ctmpos[0] > 0) {
// left = ggml_new_tensor_3d(ctx0, type, hidden_size, 1, ctmpos[0]);
left = ggml_new_tensor_3d(ctx0, type, hidden_size, ctmpos[0], 1);
}
if (ctmpos[ctmpos.size() - 1] < seq_length - 1) {
// right = ggml_new_tensor_3d(ctx0, type,
// hidden_size, 1, seq_length - ctmpos[ctmpos.size() - 1] - 1);
right = ggml_new_tensor_3d(ctx0, type,
hidden_size, seq_length - ctmpos[ctmpos.size() - 1] - 1, 1);
}
struct ggml_tensor* class_tokens_mask_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ctmpos.size());
{
if (type == GGML_TYPE_F16)
set_backend_tensor_data(class_tokens_mask_d, ctmf16.data());
else
set_backend_tensor_data(class_tokens_mask_d, ctm.data());
set_backend_tensor_data(class_tokens_mask_pos, ctmpos.data());
if (left) {
if (type == GGML_TYPE_F16) {
for (int i = 0; i < ggml_nelements(left); ++i)
zeros_left_16.push_back(ggml_fp32_to_fp16(0.f));
set_backend_tensor_data(left, zeros_left_16.data());
} else {
for (int i = 0; i < ggml_nelements(left); ++i)
zeros_left.push_back(0.f);
set_backend_tensor_data(left, zeros_left.data());
}
}
if (right) {
if (type == GGML_TYPE_F16) {
for (int i = 0; i < ggml_nelements(right); ++i)
zeros_right_16.push_back(ggml_fp32_to_fp16(0.f));
set_backend_tensor_data(right, zeros_right_16.data());
} else {
for (int i = 0; i < ggml_nelements(right); ++i)
zeros_right.push_back(0.f);
set_backend_tensor_data(right, zeros_right.data());
}
}
}
struct ggml_tensor* updated_prompt_embeds = NULL;
if (pm_version == PM_VERSION_1)
updated_prompt_embeds = id_encoder.forward(ctx0,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,
class_tokens_mask_pos,
left, right);
else if (pm_version == PM_VERSION_2)
updated_prompt_embeds = id_encoder2.forward(ctx0,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,
class_tokens_mask_pos,
id_embeds_d,
left, right);
ggml_build_forward_expand(gf, updated_prompt_embeds);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds,
std::vector<bool>& class_tokens_mask,
struct ggml_tensor** updated_prompt_embeds,
ggml_context* output_ctx) {
auto get_graph = [&]() -> struct ggml_cgraph* {
// return build_graph(compute_allocr, id_pixel_values, prompt_embeds, class_tokens_mask);
return build_graph(id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds);
};
// GGMLRunner::compute(get_graph, n_threads, updated_prompt_embeds);
GGMLRunner::compute(get_graph, n_threads, true, updated_prompt_embeds, output_ctx);
}
};
struct PhotoMakerIDEmbed : public GGMLRunner {
std::map<std::string, struct ggml_tensor*> tensors;
std::string file_path;
ModelLoader* model_loader;
bool load_failed = false;
bool applied = false;
PhotoMakerIDEmbed(ggml_backend_t backend,
ModelLoader* ml,
const std::string& file_path = "",
const std::string& prefix = "")
: file_path(file_path), GGMLRunner(backend), model_loader(ml) {
if (!model_loader->init_from_file(file_path, prefix)) {
load_failed = true;
}
}
std::string get_desc() {
return "id_embeds";
}
bool load_from_file(bool filter_tensor = false) {
LOG_INFO("loading PhotoMaker ID Embeds from '%s'", file_path.c_str());
if (load_failed) {
LOG_ERROR("init photomaker id embed from file failed: '%s'", file_path.c_str());
return false;
}
bool dry_run = true;
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
const std::string& name = tensor_storage.name;
if (filter_tensor && !contains(name, "pmid.id_embeds")) {
// LOG_INFO("skipping LoRA tesnor '%s'", name.c_str());
return true;
}
if (dry_run) {
struct ggml_tensor* real = ggml_new_tensor(params_ctx,
tensor_storage.type,
tensor_storage.n_dims,
tensor_storage.ne);
tensors[name] = real;
} else {
auto real = tensors[name];
*dst_tensor = real;
}
return true;
};
model_loader->load_tensors(on_new_tensor_cb, backend);
alloc_params_buffer();
dry_run = false;
model_loader->load_tensors(on_new_tensor_cb, backend);
LOG_DEBUG("finished loading PhotoMaker ID Embeds ");
return true;
}
struct ggml_tensor* get() {
std::map<std::string, struct ggml_tensor*>::iterator pos;
pos = tensors.find("pmid.id_embeds");
if (pos != tensors.end())
return pos->second;
return NULL;
}
};
#endif // __PMI_HPP__
|