File size: 40,322 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
#ifndef __T5_HPP__
#define __T5_HPP__
#include <float.h>
#include <limits>
#include <map>
#include <memory>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include "darts.h"
#include "ggml_extend.hpp"
#include "json.hpp"
#include "model.h"
// Port from: https://github.com/google/sentencepiece/blob/master/src/unigram_model.h
// and https://github.com/google/sentencepiece/blob/master/src/unigram_model.h.
// Original License: https://github.com/google/sentencepiece/blob/master/LICENSE
//
// Since tokenization is not the bottleneck in SD, performance was not a major consideration
// during the migration.
class MetaspacePreTokenizer {
private:
std::string replacement;
bool add_prefix_space;
public:
MetaspacePreTokenizer(const std::string replacement = " ", bool add_prefix_space = true)
: replacement(replacement), add_prefix_space(add_prefix_space) {}
std::string tokenize(const std::string& input) const {
std::string tokens;
std::stringstream ss(input);
if (add_prefix_space) {
tokens += replacement;
}
std::string token;
bool firstToken = true;
while (std::getline(ss, token, ' ')) {
if (!firstToken)
tokens += replacement + token;
else
tokens += token;
firstToken = false;
}
return tokens;
}
};
using EncodeResult = std::vector<std::pair<std::string, int>>;
class T5UniGramTokenizer {
public:
enum Status {
OK,
NO_PIECES_LOADED,
NO_ENTRY_FOUND,
BUILD_DOUBLE_ARRAY_FAILED,
PIECE_ALREADY_DEFINED,
INVLIAD_JSON
};
protected:
MetaspacePreTokenizer pre_tokenizer;
// all <piece, score> pairs
std::vector<std::pair<std::string, float>> piece_score_pairs;
float min_score_ = 0.0;
float max_score_ = 0.0;
std::unique_ptr<Darts::DoubleArray> trie_;
// Maximum size of the return value of Trie, which corresponds
// to the maximum size of shared common prefix in the sentence pieces.
int trie_results_size_;
// unknown id.
int unk_id_ = 2;
std::string eos_token_ = "</s>";
int eos_id_ = 1;
int pad_id_ = 0;
// status.
Status status_ = OK;
float kUnkPenalty = 10.0;
std::string replacement;
bool add_prefix_space = true;
void InitializePieces(const std::string& json_str) {
nlohmann::json data;
try {
data = nlohmann::json::parse(json_str);
} catch (const nlohmann::json::parse_error& e) {
status_ = INVLIAD_JSON;
return;
}
if (!data.contains("model")) {
status_ = INVLIAD_JSON;
return;
}
nlohmann::json model = data["model"];
if (!model.contains("vocab")) {
status_ = INVLIAD_JSON;
return;
}
if (model.contains("unk_id")) {
unk_id_ = model["unk_id"];
}
replacement = data["pre_tokenizer"]["replacement"];
add_prefix_space = data["pre_tokenizer"]["add_prefix_space"];
pre_tokenizer = MetaspacePreTokenizer(replacement, add_prefix_space);
for (const auto& item : model["vocab"]) {
if (item.size() != 2 || !item[0].is_string() || !item[1].is_number_float()) {
status_ = INVLIAD_JSON;
return;
}
std::string piece = item[0];
float score = item[1];
piece_score_pairs.emplace_back(piece, score);
}
}
// Builds a Trie index.
void BuildTrie(std::vector<std::pair<std::string, int>>* pieces) {
if (status_ != OK)
return;
if (pieces->empty()) {
status_ = NO_PIECES_LOADED;
return;
}
// sort by sentencepiece since DoubleArray::build()
// only accepts sorted strings.
sort(pieces->begin(), pieces->end());
// Makes key/value set for DoubleArrayTrie.
std::vector<const char*> key(pieces->size());
std::vector<int> value(pieces->size());
for (size_t i = 0; i < pieces->size(); ++i) {
key[i] = (*pieces)[i].first.data(); // sorted piece.
value[i] = (*pieces)[i].second; // vocab_id
}
trie_ = std::unique_ptr<Darts::DoubleArray>(new Darts::DoubleArray());
if (trie_->build(key.size(), const_cast<char**>(&key[0]), nullptr,
&value[0]) != 0) {
status_ = BUILD_DOUBLE_ARRAY_FAILED;
return;
}
// Computes the maximum number of shared prefixes in the trie.
const int kMaxTrieResultsSize = 1024;
std::vector<Darts::DoubleArray::result_pair_type> results(
kMaxTrieResultsSize);
trie_results_size_ = 0;
for (const auto& p : *pieces) {
const int num_nodes = trie_->commonPrefixSearch(
p.first.data(), results.data(), results.size(), p.first.size());
trie_results_size_ = std::max(trie_results_size_, num_nodes);
}
if (trie_results_size_ == 0)
status_ = NO_ENTRY_FOUND;
}
// Non-virtual (inlined) implementation for faster execution.
inline float GetScoreInlined(int id) const {
return piece_score_pairs[id].second;
}
inline bool IsUnusedInlined(int id) const {
return false; // TODO
}
inline bool IsUserDefinedInlined(int id) const {
return false; // TODO
}
inline size_t OneCharLen(const char* src) const {
return "\1\1\1\1\1\1\1\1\1\1\1\1\2\2\3\4"[(*src & 0xFF) >> 4];
}
// The optimized Viterbi encode.
// Main differences from the original function:
// 1. Memorizes the best path at each postion so far,
// 2. No need to store the Lattice nodes,
// 3. Works in utf-8 directly,
// 4. Defines a new struct with fewer fields than Lattice,
// 5. Does not depend on `class Lattice` nor call `SetSentence()`,
// `PopulateNodes()`, or `Viterbi()`. It does everything in one function.
// For detailed explanations please see the comments inside the function body.
EncodeResult EncodeOptimized(const std::string& normalized) const {
// An optimized Viterbi algorithm for unigram language models. Benchmarking
// results show that it generates almost identical outputs and achieves 2.1x
// speedup on average for 102 languages compared to the original
// implementation. It's based on the following three ideas:
//
// 1. Because it uses the *unigram* model:
// best_score(x1, x2, …, xt) = best_score(x1, x2, …, x{t-1}) + score(xt)
// Deciding the best path (and score) can be decoupled into two isolated
// terms: (a) the best path ended before the last token `best_score(x1, x2, …,
// x{t-1})`, and (b) the last token and its `score(xt)`. The two terms are
// not related to each other at all.
//
// Therefore, we can compute once and store the *best_path ending at
// each character position*. In this way, when we know best_path_ends_at[M],
// we can reuse it to compute all the best_path_ends_at_[...] where the last
// token starts at the same character position M.
//
// This improves the time complexity from O(n*k*k) to O(n*k) because it
// eliminates the extra loop of recomputing the best path ending at the same
// position, where n is the input length and k is the maximum number of tokens
// that can be recognized starting at each position.
//
// 2. Again, because it uses the *unigram* model, we don’t need to actually
// store the lattice nodes. We still recognize all the tokens and lattice
// nodes from the input, but along identifying them, we use and discard them
// on the fly. There is no need to actually store them for best path Viterbi
// decoding. The only thing we need to store is the best_path ending at
// each character position.
//
// This improvement reduces the things needed to store in memory from O(n*k)
// to O(n), where n is the input length and k is the maximum number of tokens
// that can be recognized starting at each position.
//
// It also avoids the need of dynamic-size lattice node pool, because the
// number of things to store is fixed as n.
//
// 3. SentencePiece is designed to work with unicode, taking utf-8 encoding
// inputs. In the original implementation, the lattice positions are based on
// unicode positions. A mapping from unicode position to the utf-8 position is
// maintained to recover the utf-8 string piece.
//
// We found that it is sufficient and beneficial to directly work with utf-8
// positions:
//
// Firstly, it saves the conversion and mapping between unicode positions and
// utf-8 positions.
//
// Secondly, it reduces the number of fields we need to maintain in the
// node/path structure. Specifically, there are 8 fields defined in
// `Lattice::Node` used by the original encoder, but here in the optimized
// encoder we only need to define 3 fields in `BestPathNode`.
if (status() != OK || normalized.empty()) {
return {};
}
// Represents the last node of the best path.
struct BestPathNode {
int id = -1; // The vocab id. (maybe -1 for UNK)
float best_path_score =
0; // The total score of the best path ending at this node.
int starts_at =
-1; // The starting position (in utf-8) of this node. The entire best
// path can be constructed by backtracking along this link.
};
const int size = normalized.size();
const float unk_score = min_score() - kUnkPenalty;
// The ends are exclusive.
std::vector<BestPathNode> best_path_ends_at(size + 1);
// Generate lattice on-the-fly (not stored) and update best_path_ends_at.
int starts_at = 0;
while (starts_at < size) {
std::size_t node_pos = 0;
std::size_t key_pos = starts_at;
const auto best_path_score_till_here =
best_path_ends_at[starts_at].best_path_score;
bool has_single_node = false;
const int mblen =
std::min<int>(OneCharLen(normalized.data() + starts_at),
size - starts_at);
while (key_pos < size) {
const int ret =
trie_->traverse(normalized.data(), node_pos, key_pos, key_pos + 1);
if (ret == -2)
break;
if (ret >= 0) {
if (IsUnusedInlined(ret))
continue;
// Update the best path node.
auto& target_node = best_path_ends_at[key_pos];
const auto length = (key_pos - starts_at);
// User defined symbol receives extra bonus to always be selected.
const auto score = IsUserDefinedInlined(ret)
? (length * max_score_ - 0.1)
: GetScoreInlined(ret);
const auto candidate_best_path_score =
score + best_path_score_till_here;
if (target_node.starts_at == -1 ||
candidate_best_path_score > target_node.best_path_score) {
target_node.best_path_score = candidate_best_path_score;
target_node.starts_at = starts_at;
target_node.id = ret;
}
if (!has_single_node && length == mblen) {
has_single_node = true;
}
}
}
if (!has_single_node) {
auto& target_node = best_path_ends_at[starts_at + mblen];
const auto candidate_best_path_score =
unk_score + best_path_score_till_here;
if (target_node.starts_at == -1 ||
candidate_best_path_score > target_node.best_path_score) {
target_node.best_path_score = candidate_best_path_score;
target_node.starts_at = starts_at;
target_node.id = unk_id_;
}
}
// Move by one unicode character.
starts_at += mblen;
}
// Backtrack to identify the best path.
EncodeResult results;
int ends_at = size;
while (ends_at > 0) {
const auto& node = best_path_ends_at[ends_at];
results.emplace_back(
normalized.substr(node.starts_at, ends_at - node.starts_at), node.id);
ends_at = node.starts_at;
}
std::reverse(results.begin(), results.end());
return results;
}
public:
explicit T5UniGramTokenizer(const std::string& json_str = "") {
if (json_str.size() != 0) {
InitializePieces(json_str);
} else {
InitializePieces(ModelLoader::load_t5_tokenizer_json());
}
min_score_ = FLT_MAX;
max_score_ = FLT_MIN;
std::vector<std::pair<std::string, int>> pieces;
for (int i = 0; i < piece_score_pairs.size(); i++) {
const auto& sp = piece_score_pairs[i];
min_score_ = std::min(min_score_, sp.second);
max_score_ = std::max(max_score_, sp.second);
pieces.emplace_back(sp.first, i);
}
BuildTrie(&pieces);
}
~T5UniGramTokenizer(){};
std::string Normalize(const std::string& input) const {
// Ref: https://github.com/huggingface/tokenizers/blob/1ff56c0c70b045f0cd82da1af9ac08cd4c7a6f9f/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py#L29
// TODO: nmt-nfkc
std::string normalized = std::regex_replace(input, std::regex(" {2,}"), " ");
return normalized;
}
std::vector<int> Encode(const std::string& input, bool append_eos_if_not_present = true) const {
std::string normalized = Normalize(input);
normalized = pre_tokenizer.tokenize(normalized);
EncodeResult result = EncodeOptimized(normalized);
if (result.size() > 0 && append_eos_if_not_present) {
auto item = result[result.size() - 1];
if (item.first != eos_token_) {
result.emplace_back(eos_token_, eos_id_);
}
}
std::vector<int> tokens;
for (auto item : result) {
tokens.push_back(item.second);
}
return tokens;
}
void pad_tokens(std::vector<int>& tokens,
std::vector<float>& weights,
size_t max_length = 0,
bool padding = false) {
if (max_length > 0 && padding) {
size_t orig_token_num = tokens.size() - 1;
size_t n = std::ceil(orig_token_num * 1.0 / (max_length - 1));
if (n == 0) {
n = 1;
}
size_t length = max_length * n;
LOG_DEBUG("token length: %llu", length);
std::vector<int> new_tokens;
std::vector<float> new_weights;
int token_idx = 0;
for (int i = 0; i < length; i++) {
if (token_idx >= orig_token_num) {
break;
}
if (i % max_length == max_length - 1) {
new_tokens.push_back(eos_id_);
new_weights.push_back(1.0);
} else {
new_tokens.push_back(tokens[token_idx]);
new_weights.push_back(weights[token_idx]);
token_idx++;
}
}
new_tokens.push_back(eos_id_);
new_weights.push_back(1.0);
tokens = new_tokens;
weights = new_weights;
if (padding) {
int pad_token_id = pad_id_;
tokens.insert(tokens.end(), length - tokens.size(), pad_token_id);
weights.insert(weights.end(), length - weights.size(), 1.0);
}
}
}
// Returns the minimum score in sentence pieces.
// min_score() - 10 is used for the cost of unknown sentence.
float min_score() const { return min_score_; }
// Returns the maximum score in sentence pieces.
// max_score() is used for the cost of user defined symbols.
float max_score() const { return max_score_; }
Status status() const { return status_; }
};
class T5LayerNorm : public UnaryBlock {
protected:
int64_t hidden_size;
float eps;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
}
public:
T5LayerNorm(int64_t hidden_size,
float eps = 1e-06f)
: hidden_size(hidden_size),
eps(eps) {}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
struct ggml_tensor* w = params["weight"];
x = ggml_rms_norm(ctx, x, eps);
x = ggml_mul(ctx, x, w);
return x;
}
};
struct T5DenseActDense : public UnaryBlock {
public:
T5DenseActDense(int64_t model_dim, int64_t ff_dim) {
blocks["wi"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, ff_dim, false));
blocks["wo"] = std::shared_ptr<GGMLBlock>(new Linear(ff_dim, model_dim, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, model_dim]
auto wi = std::dynamic_pointer_cast<Linear>(blocks["wi"]);
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
x = wi->forward(ctx, x);
x = ggml_relu_inplace(ctx, x);
x = wo->forward(ctx, x);
return x;
}
};
struct T5DenseGatedActDense : public UnaryBlock {
public:
T5DenseGatedActDense(int64_t model_dim, int64_t ff_dim) {
blocks["wi_0"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, ff_dim, false));
blocks["wi_1"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, ff_dim, false));
blocks["wo"] = std::shared_ptr<GGMLBlock>(new Linear(ff_dim, model_dim, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, model_dim]
auto wi_0 = std::dynamic_pointer_cast<Linear>(blocks["wi_0"]);
auto wi_1 = std::dynamic_pointer_cast<Linear>(blocks["wi_1"]);
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
auto hidden_gelu = ggml_gelu_inplace(ctx, wi_0->forward(ctx, x));
auto hidden_linear = wi_1->forward(ctx, x);
x = ggml_mul_inplace(ctx, hidden_gelu, hidden_linear);
x = wo->forward(ctx, x);
return x;
}
};
struct T5LayerFF : public UnaryBlock {
public:
T5LayerFF(int64_t model_dim, int64_t ff_dim) {
blocks["DenseReluDense"] = std::shared_ptr<GGMLBlock>(new T5DenseGatedActDense(model_dim, ff_dim));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new T5LayerNorm(model_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, model_dim]
auto DenseReluDense = std::dynamic_pointer_cast<T5DenseGatedActDense>(blocks["DenseReluDense"]);
auto layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["layer_norm"]);
auto forwarded_states = layer_norm->forward(ctx, x);
forwarded_states = DenseReluDense->forward(ctx, forwarded_states);
x = ggml_add_inplace(ctx, forwarded_states, x);
return x;
}
};
class T5Attention : public GGMLBlock {
protected:
int64_t model_dim;
int64_t inner_dim;
int64_t num_heads;
bool using_relative_attention_bias;
int64_t relative_attention_num_buckets = 32;
int64_t relative_attention_max_distance = 128;
public:
T5Attention(int64_t model_dim,
int64_t inner_dim,
int64_t num_heads,
bool using_relative_attention_bias = false)
: model_dim(model_dim),
inner_dim(inner_dim),
num_heads(num_heads),
using_relative_attention_bias(using_relative_attention_bias) {
blocks["q"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, inner_dim, false));
blocks["k"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, inner_dim, false));
blocks["v"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, inner_dim, false));
blocks["o"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, model_dim, false));
if (using_relative_attention_bias) {
blocks["relative_attention_bias"] = std::shared_ptr<GGMLBlock>(new Embedding(relative_attention_num_buckets, num_heads));
}
}
struct ggml_tensor* compute_bias(struct ggml_context* ctx,
struct ggml_tensor* relative_position_bucket) {
auto relative_attention_bias = std::dynamic_pointer_cast<Embedding>(blocks["relative_attention_bias"]);
auto values = relative_attention_bias->forward(ctx, relative_position_bucket); // shape (query_length, key_length, num_heads)
values = ggml_cont(ctx, ggml_permute(ctx, values, 2, 0, 1, 3)); // shape (1, num_heads, query_length, key_length)
return values;
}
// x: [N, n_token, model_dim]
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks["q"]);
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks["k"]);
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks["v"]);
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks["o"]);
int64_t n_head = num_heads;
int64_t d_head = inner_dim / n_head;
auto q = q_proj->forward(ctx, x);
auto k = k_proj->forward(ctx, x);
auto v = v_proj->forward(ctx, x);
if (using_relative_attention_bias && relative_position_bucket != NULL) {
past_bias = compute_bias(ctx, relative_position_bucket);
}
if (past_bias != NULL) {
if (mask != NULL) {
mask = ggml_add(ctx, mask, past_bias);
} else {
mask = past_bias;
}
}
k = ggml_scale_inplace(ctx, k, sqrt(d_head));
x = ggml_nn_attention_ext(ctx, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
x = out_proj->forward(ctx, x); // [N, n_token, model_dim]
return {x, past_bias};
}
};
struct T5LayerSelfAttention : public GGMLBlock {
public:
T5LayerSelfAttention(int64_t model_dim,
int64_t inner_dim,
int64_t ff_dim,
int64_t num_heads,
bool using_relative_attention_bias) {
blocks["SelfAttention"] = std::shared_ptr<GGMLBlock>(new T5Attention(model_dim, inner_dim, num_heads, using_relative_attention_bias));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new T5LayerNorm(model_dim));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// x: [N, n_token, model_dim]
auto SelfAttention = std::dynamic_pointer_cast<T5Attention>(blocks["SelfAttention"]);
auto layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["layer_norm"]);
auto normed_hidden_state = layer_norm->forward(ctx, x);
auto ret = SelfAttention->forward(ctx, normed_hidden_state, past_bias, mask, relative_position_bucket);
auto output = ret.first;
past_bias = ret.second;
x = ggml_add_inplace(ctx, output, x);
return {x, past_bias};
}
};
struct T5Block : public GGMLBlock {
public:
T5Block(int64_t model_dim, int64_t inner_dim, int64_t ff_dim, int64_t num_heads, bool using_relative_attention_bias) {
blocks["layer.0"] = std::shared_ptr<GGMLBlock>(new T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, using_relative_attention_bias));
blocks["layer.1"] = std::shared_ptr<GGMLBlock>(new T5LayerFF(model_dim, ff_dim));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// x: [N, n_token, model_dim]
auto layer_0 = std::dynamic_pointer_cast<T5LayerSelfAttention>(blocks["layer.0"]);
auto layer_1 = std::dynamic_pointer_cast<T5LayerFF>(blocks["layer.1"]);
auto ret = layer_0->forward(ctx, x, past_bias, mask, relative_position_bucket);
x = ret.first;
past_bias = ret.second;
x = layer_1->forward(ctx, x);
return {x, past_bias};
}
};
struct T5Stack : public GGMLBlock {
int64_t num_layers;
public:
T5Stack(int64_t num_layers,
int64_t model_dim,
int64_t inner_dim,
int64_t ff_dim,
int64_t num_heads)
: num_layers(num_layers) {
for (int i = 0; i < num_layers; i++) {
blocks["block." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new T5Block(model_dim, inner_dim, ff_dim, num_heads, i == 0));
}
blocks["final_layer_norm"] = std::shared_ptr<GGMLBlock>(new T5LayerNorm(model_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* attention_mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// x: [N, n_token, model_dim]
for (int i = 0; i < num_layers; i++) {
auto block = std::dynamic_pointer_cast<T5Block>(blocks["block." + std::to_string(i)]);
auto ret = block->forward(ctx, x, past_bias, attention_mask, relative_position_bucket);
x = ret.first;
past_bias = ret.second;
}
auto final_layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["final_layer_norm"]);
x = final_layer_norm->forward(ctx, x);
return x;
}
};
struct T5 : public GGMLBlock {
public:
T5(int64_t num_layers,
int64_t model_dim,
int64_t ff_dim,
int64_t num_heads,
int64_t vocab_size) {
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new T5Stack(num_layers, model_dim, model_dim, ff_dim, num_heads));
blocks["shared"] = std::shared_ptr<GGMLBlock>(new Embedding(vocab_size, model_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* attention_mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// input_ids: [N, n_token]
auto shared = std::dynamic_pointer_cast<Embedding>(blocks["shared"]);
auto encoder = std::dynamic_pointer_cast<T5Stack>(blocks["encoder"]);
auto x = shared->forward(ctx, input_ids);
x = encoder->forward(ctx, x, past_bias, attention_mask, relative_position_bucket);
return x;
}
};
struct T5Runner : public GGMLRunner {
T5 model;
std::vector<int> relative_position_bucket_vec;
T5Runner(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
int64_t num_layers = 24,
int64_t model_dim = 4096,
int64_t ff_dim = 10240,
int64_t num_heads = 64,
int64_t vocab_size = 32128)
: GGMLRunner(backend), model(num_layers, model_dim, ff_dim, num_heads, vocab_size) {
model.init(params_ctx, tensor_types, prefix);
}
std::string get_desc() {
return "t5";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* relative_position_bucket) {
size_t N = input_ids->ne[1];
size_t n_token = input_ids->ne[0];
auto hidden_states = model.forward(ctx, input_ids, NULL, NULL, relative_position_bucket); // [N, n_token, model_dim]
return hidden_states;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
input_ids = to_backend(input_ids);
relative_position_bucket_vec = compute_relative_position_bucket(input_ids->ne[0], input_ids->ne[0]);
// for (int i = 0; i < relative_position_bucket_vec.size(); i++) {
// if (i % 77 == 0) {
// printf("\n");
// }
// printf("%d ", relative_position_bucket_vec[i]);
// }
auto relative_position_bucket = ggml_new_tensor_2d(compute_ctx,
GGML_TYPE_I32,
input_ids->ne[0],
input_ids->ne[0]);
set_backend_tensor_data(relative_position_bucket, relative_position_bucket_vec.data());
struct ggml_tensor* hidden_states = forward(compute_ctx, input_ids, relative_position_bucket);
ggml_build_forward_expand(gf, hidden_states);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* input_ids,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(input_ids);
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}
static std::vector<int> _relative_position_bucket(const std::vector<int>& relative_position,
bool bidirectional = true,
int num_buckets = 32,
int max_distance = 128) {
std::vector<int> relative_buckets(relative_position.size(), 0);
std::vector<int> abs_relative_position = relative_position;
if (bidirectional) {
num_buckets = num_buckets / 2;
for (size_t i = 0; i < relative_position.size(); ++i) {
if (relative_position[i] > 0) {
relative_buckets[i] += num_buckets;
}
abs_relative_position[i] = std::abs(relative_position[i]);
}
} else {
for (size_t i = 0; i < relative_position.size(); ++i) {
abs_relative_position[i] = std::max(-relative_position[i], 0);
}
}
int max_exact = num_buckets / 2;
std::vector<int> relative_position_if_large(relative_position.size(), 0);
for (size_t i = 0; i < relative_position.size(); ++i) {
if (abs_relative_position[i] < max_exact) {
relative_buckets[i] += abs_relative_position[i];
} else {
float log_pos = std::log(static_cast<float>(abs_relative_position[i]) / max_exact);
float log_base = std::log(static_cast<float>(max_distance) / max_exact);
relative_position_if_large[i] = max_exact + static_cast<int>((log_pos / log_base) * (num_buckets - max_exact));
relative_position_if_large[i] = std::min(relative_position_if_large[i], num_buckets - 1);
relative_buckets[i] += relative_position_if_large[i];
}
}
return relative_buckets;
}
std::vector<int> compute_relative_position_bucket(int query_length,
int key_length) {
std::vector<int> context_position(query_length);
std::vector<int> memory_position(key_length);
for (int i = 0; i < query_length; ++i) {
context_position[i] = i;
}
for (int i = 0; i < key_length; ++i) {
memory_position[i] = i;
}
std::vector<std::vector<int>> relative_position(query_length, std::vector<int>(key_length, 0));
for (int i = 0; i < query_length; ++i) {
for (int j = 0; j < key_length; ++j) {
relative_position[i][j] = memory_position[j] - context_position[i];
}
}
std::vector<int> relative_position_bucket;
for (int i = 0; i < query_length; ++i) {
std::vector<int> result = _relative_position_bucket(relative_position[i], true);
relative_position_bucket.insert(relative_position_bucket.end(), result.begin(), result.end());
}
return relative_position_bucket;
}
};
struct T5Embedder {
T5UniGramTokenizer tokenizer;
T5Runner model;
static std::map<std::string, enum ggml_type> empty_tensor_types;
T5Embedder(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types,
const std::string prefix = "",
int64_t num_layers = 24,
int64_t model_dim = 4096,
int64_t ff_dim = 10240,
int64_t num_heads = 64,
int64_t vocab_size = 32128)
: model(backend, tensor_types, prefix, num_layers, model_dim, ff_dim, num_heads, vocab_size) {
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
void alloc_params_buffer() {
model.alloc_params_buffer();
}
std::pair<std::vector<int>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0,
bool padding = false) {
auto parsed_attention = parse_prompt_attention(text);
{
std::stringstream ss;
ss << "[";
for (const auto& item : parsed_attention) {
ss << "['" << item.first << "', " << item.second << "], ";
}
ss << "]";
LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str());
}
std::vector<int> tokens;
std::vector<float> weights;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = tokenizer.Encode(curr_text, false);
tokens.insert(tokens.end(), curr_tokens.begin(), curr_tokens.end());
weights.insert(weights.end(), curr_tokens.size(), curr_weight);
}
int EOS_TOKEN_ID = 1;
tokens.push_back(EOS_TOKEN_ID);
weights.push_back(1.0);
tokenizer.pad_tokens(tokens, weights, max_length, padding);
// for (int i = 0; i < tokens.size(); i++) {
// std::cout << tokens[i] << ":" << weights[i] << ", ";
// }
// std::cout << std::endl;
return {tokens, weights};
}
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
GGML_ASSERT(work_ctx != NULL);
{
// cpu f16: pass
// cpu f32: pass
// cuda f16: nan
// cuda f32: pass
// cuda q8_0: nan
// TODO: fix cuda nan
std::string text("a lovely cat");
auto tokens_and_weights = tokenize(text, 77, true);
std::vector<int>& tokens = tokens_and_weights.first;
std::vector<float>& weights = tokens_and_weights.second;
for (auto token : tokens) {
printf("%d ", token);
}
printf("\n");
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
model.compute(8, input_ids, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);
LOG_DEBUG("t5 test done in %dms", t1 - t0);
}
}
static void load_from_file_and_test(const std::string& file_path) {
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F32;
std::shared_ptr<T5Embedder> t5 = std::shared_ptr<T5Embedder>(new T5Embedder(backend));
{
LOG_INFO("loading from '%s'", file_path.c_str());
t5->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
t5->get_param_tensors(tensors, "");
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
return;
}
bool success = model_loader.load_tensors(tensors, backend);
if (!success) {
LOG_ERROR("load tensors from model loader failed");
return;
}
LOG_INFO("t5 model loaded");
}
t5->test();
}
};
#endif // __T5_HPP__ |