File size: 40,472 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
#include "model_adapter.h"
#include "otherarch/utils.h"

#include "common.h"
#include "sampling.h"
#include "llama.h"

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <fstream>
#include <map>
#include <regex>
#include <string>
#include <thread>
#include <vector>

#include "src/llama-context.h"

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#ifndef M_PI
#define M_PI		3.14159265358979323846
#endif

enum TTS_VER
{
    TTS_VER_2,
    TTS_VER_3
};

struct wav_header {
    char riff[4] = {'R', 'I', 'F', 'F'};
    uint32_t chunk_size;
    char wave[4] = {'W', 'A', 'V', 'E'};
    char fmt[4] = {'f', 'm', 't', ' '};
    uint32_t fmt_chunk_size = 16;
    uint16_t audio_format = 1; // PCM
    uint16_t num_channels = 1; // Mono
    uint32_t sample_rate;
    uint32_t byte_rate;
    uint16_t block_align;
    uint16_t bits_per_sample = 16;
    char data[4] = {'d', 'a', 't', 'a'};
    uint32_t data_size;
};

static std::string save_wav16_base64(const std::vector<float> &data, int sample_rate) {
    std::ostringstream oss;
    wav_header header;

    // Fill header fields
    header.sample_rate = sample_rate;
    header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8);
    header.block_align = header.num_channels * (header.bits_per_sample / 8);
    header.data_size = data.size() * (header.bits_per_sample / 8);
    header.chunk_size = 36 + header.data_size;

    // Write header
    oss.write(reinterpret_cast<const char*>(&header), sizeof(header));

    // Write samples
    for (const auto &sample : data) {
        int16_t pcm_sample = static_cast<int16_t>(std::clamp(sample * 32767.0, -32768.0, 32767.0));
        oss.write(reinterpret_cast<const char*>(&pcm_sample), sizeof(pcm_sample));
    }

    // Get binary WAV data
    std::string wav_data = oss.str();
    return kcpp_base64_encode(wav_data); //return as base64 string
}

static void fill_hann_window(int length, bool periodic, float * output) {
    int offset = -1;
    if (periodic) {
        offset = 0;
    }
    for (int i = 0; i < length; i++) {
        output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
    }
}

// very poor-man fft
static void twiddle(float * real, float * imag, int k, int N) {
    float angle = 2 * M_PI * k / N;
    *real = cos(angle);
    *imag = sin(angle);
}

static void irfft(int n, const float * inp_cplx, float * out_real) {
    int N = n / 2 + 1;

    std::vector<float> real_input(N);
    std::vector<float> imag_input(N);
    for (int i = 0; i < N; ++i) {
        real_input[i] = inp_cplx[2 * i];
        imag_input[i] = inp_cplx[2 * i + 1];
    }

    std::vector<float> real_output(n);
    std::vector<float> imag_output(n);

    for (int k = 0; k < n; ++k) {
        real_output[k] = 0.0f;
        imag_output[k] = 0.0f;
        for (int m = 0; m < N; ++m) {
            float twiddle_real;
            float twiddle_imag;

            twiddle(&twiddle_real, &twiddle_imag, k * m, n);

            real_output[k] += real_input[m] * twiddle_real - imag_input[m] * twiddle_imag;
            imag_output[k] += real_input[m] * twiddle_imag + imag_input[m] * twiddle_real;
        }
    }

    for (int i = 0; i < n; ++i) {
        out_real[i] = real_output[i] / N;
    }
}


static void fold(const std::vector<float> & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector<float> & output) {
    int64_t output_height = n_out;
    int64_t kernel_w = n_win;
    int64_t stride_w = n_hop;
    int64_t width    = n_out;

    output.resize(width, 0.0f);

    int64_t col_idx = 0;
    for (int64_t w_col = 0; w_col < width; ++w_col) {
        int64_t start = w_col * stride_w - n_pad;
        int64_t end   = start + kernel_w;

        for (int64_t w_im = start; w_im < end; ++w_im) {
            if (w_im >= 0 && w_im < output_height && col_idx < (int64_t) data.size()) {
                output[w_im] += data[col_idx];
            }
            col_idx++;
        }
    }

    output.resize(n_out - 2 * n_pad);
}

// TODO: not optimized at all
static std::vector<float> embd_to_audio(
        const float * embd,
        const int n_codes,
        const int n_embd,
        const int n_thread) {

    const int n_fft = 1280; //its 1280 at 320, or 2400 at 600
    const int n_hop = 320;
    const int n_win = 1280;
    const int n_pad = (n_win - n_hop)/2;
    const int n_out = (n_codes - 1)*n_hop + n_win;

    std::vector<float> hann(n_fft);

    fill_hann_window(hann.size(), true, hann.data());

    int n_spec = n_embd*n_codes;

    std::vector<float> E (n_spec);
    std::vector<float> S (n_spec);
    std::vector<float> ST(n_spec);

    for (int l = 0; l < n_codes; ++l) {
        for (int k = 0; k < n_embd; ++k) {
            E[k*n_codes + l] = embd[l*n_embd + k];
        }
    }

    for (int k = 0; k < n_embd/2; ++k) {
        for (int l = 0; l < n_codes; ++l) {
            float mag = E[(k           )*n_codes + l];
            float phi = E[(k + n_embd/2)*n_codes + l];

            mag = exp(mag);

            if (mag > 1e2) {
                mag = 1e2;
            }
            S[2*(k*n_codes + l) + 0] = mag*cosf(phi);
            S[2*(k*n_codes + l) + 1] = mag*sinf(phi);
        }
    }

    for (int l = 0; l < n_codes; ++l) {
        for (int k = 0; k < n_embd/2; ++k) {
            ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0];
            ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1];
        }
    }

    std::vector<float> res  (n_codes*n_fft);
    std::vector<float> hann2(n_codes*n_fft);

    std::vector<std::thread> workers(n_thread);
    for (int i = 0; i < n_thread; ++i) {
        workers[i] = std::thread([&, i]() {
            for (int l = i; l < n_codes; l += n_thread) {
                irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft);
                for (int j = 0; j < n_fft; ++j) {
                    res  [l*n_fft + j] *= hann[j];
                    hann2[l*n_fft + j]  = hann[j] * hann[j];
                }
            }
        });
    }
    for (int i = 0; i < n_thread; ++i) {
        workers[i].join();
    }

    std::vector<float> audio;
    std::vector<float> env;

    fold(res,   n_out, n_win, n_hop, n_pad, audio);
    fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once

    for (size_t i = 0; i < audio.size(); ++i) {
        audio[i] /= env[i];
    }

    return audio;
}

static const std::map<int, std::string> ones = {
    {0, "zero"}, {1, "one"}, {2, "two"}, {3, "three"}, {4, "four"},
    {5, "five"}, {6, "six"}, {7, "seven"}, {8, "eight"}, {9, "nine"},
    {10, "ten"}, {11, "eleven"}, {12, "twelve"}, {13, "thirteen"}, {14, "fourteen"},
    {15, "fifteen"}, {16, "sixteen"}, {17, "seventeen"}, {18, "eighteen"}, {19, "nineteen"}
};

static const std::map<int, std::string> tens = {
    {2, "twenty"}, {3, "thirty"}, {4, "forty"}, {5, "fifty"},
    {6, "sixty"}, {7, "seventy"}, {8, "eighty"}, {9, "ninety"}
};

// Convert a number less than 1000 to words
static std::string convert_less_than_thousand(int num) {
    std::string result;

    if (num >= 100) {
        result += ones.at(num / 100) + " hundred ";
        num %= 100;
    }

    if (num >= 20) {
        result += tens.at(num / 10);
        if (num % 10 > 0) {
            result += "-" + ones.at(num % 10);
        }
    } else if (num > 0) {
        result += ones.at(num);
    }

    return result;
}

static std::string number_to_words(const std::string & number_str) {
    try {
        size_t decimal_pos = number_str.find('.');
        std::string integer_part = number_str.substr(0, decimal_pos);

        int int_number = std::stoi(integer_part);
        std::string result;

        if (int_number == 0) {
            result = "zero";
        } else {
            if (int_number >= 1000000000) {
                int billions = int_number / 1000000000;
                result += convert_less_than_thousand(billions) + " billion ";
                int_number %= 1000000000;
            }

            if (int_number >= 1000000) {
                int millions = int_number / 1000000;
                result += convert_less_than_thousand(millions) + " million ";
                int_number %= 1000000;
            }

            if (int_number >= 1000) {
                int thousands = int_number / 1000;
                result += convert_less_than_thousand(thousands) + " thousand ";
                int_number %= 1000;
            }

            if (int_number > 0) {
                result += convert_less_than_thousand(int_number);
            }
        }

        // Handle decimal part
        if (decimal_pos != std::string::npos) {
            result += " point";
            std::string decimal_part = number_str.substr(decimal_pos + 1);
            for (char digit : decimal_part) {
                result += " " + ones.at(digit - '0');
            }
        }

        return result;
    } catch (const std::exception& e) {
        // Skip if fails
        return " ";
    }
}

static std::string replace_numbers_with_words(const std::string & input_text) {
    std::regex number_pattern(R"(\d+(\.\d+)?)");
    std::string result;
    auto it = std::sregex_iterator(input_text.begin(), input_text.end(), number_pattern);
    auto end = std::sregex_iterator();

    size_t last_pos = 0;
    for (std::sregex_iterator i = it; i != end; ++i) {
        const std::smatch& match = *i;
        result.append(input_text, last_pos, match.position() - last_pos);
        result.append(number_to_words(match.str()));
        last_pos = match.position() + match.length();
    }
    result.append(input_text, last_pos);

    return result;
}

static std::string process_text(const std::string & text, TTS_VER ver) {

    std::string processed_text = replace_numbers_with_words(text);

    std::transform(processed_text.begin(), processed_text.end(),
                  processed_text.begin(), ::tolower);

    if(ver==TTS_VER_2)
    {
        // replace multiple punctuation with single
        processed_text = std::regex_replace(processed_text, std::regex(R"(([,.!?])\1+)"), "$1");
        //handle words connected by periods, add a space
        processed_text = std::regex_replace(processed_text, std::regex(R"(([.,?!])([^\s]))"), "$1 $2"); //add space after punctuation
        std::regex special_chars(R"([\(\)\[\]\{\}\:-_/,\.\\])");
        processed_text = std::regex_replace(processed_text, special_chars, " ");
        std::regex non_alpha(R"([^a-z\s])");
        processed_text = std::regex_replace(processed_text, non_alpha, "");
        std::regex multiple_spaces(R"(\s+)");
        processed_text = std::regex_replace(processed_text, multiple_spaces, " ");
        processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), "");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>");
    } else {
        std::regex special_chars(R"([\(\)\[\]\{\}\:-_/\\])");
        processed_text = std::regex_replace(processed_text, special_chars, " ");
        std::regex non_alpha(R"([^a-z\s.,?!])");
        processed_text = std::regex_replace(processed_text, non_alpha, "");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\s+)"), " "); // compress multiple spaces
        processed_text = std::regex_replace(processed_text, std::regex(R"(([,.!?])\1+)"), "$1"); // replace multiple punctuation with single
        processed_text = std::regex_replace(processed_text, std::regex(R"(\s+([.,!?]))"), "$1"); // Remove whitespace before punctuation
        processed_text = std::regex_replace(processed_text, std::regex(R"(([.,?!])([^\s]))"), "$1 $2"); //add space after punctuation
        processed_text = std::regex_replace(processed_text, std::regex(R"(\,)"), "<|comma|>");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\.)"), "<|period|>");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\?)"), "<|question_mark|>");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\!)"), "<|exclamation_mark|>");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\s+)"), " "); // compress multiple spaces
        processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), "");
        processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|space|>");
    }

    return processed_text;
}

static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) {
    prompt.insert(prompt.end(), tokens.begin(), tokens.end());
}
static void prompt_add(llama_tokens & prompt, const llama_vocab * vocab, const std::string & txt, bool add_special, bool parse_special) {
    auto tmp = common_tokenize(vocab, txt, add_special, parse_special);
    prompt_add(prompt, tmp);
}
static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
    prompt.clear();
    prompt_add(prompt, vocab, "<|im_start|>\n<|text_start|>", true, true);
}

static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string& str, TTS_VER ver)
{
    std::string delimiter = "<|text_sep|>";
    if(ver==TTS_VER_3)
    {
        delimiter = "<|space|>";
    }

    std::vector<llama_token> result;
    size_t start = 0;
    size_t end = str.find(delimiter);

    while (end != std::string::npos) {
        std::string current_word = str.substr(start, end - start);
        auto tmp = common_tokenize(vocab, current_word, false, true);
        result.push_back(tmp[0]);
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    // Add the last part
    std::string current_word = str.substr(start);
    if(current_word!="")
    {
        auto tmp = common_tokenize(vocab, current_word, false, true);
        if(tmp.size()>0){
            result.push_back(tmp[0]);
        }
    }

    return result;
}

std::string format_audiotokens(const std::string& input, TTS_VER ver)
{
    if (ver == TTS_VER_2) {
        //already correct
        return input;
    } else {
        std::string clean = std::regex_replace(input, std::regex(R"(<\|code_start\|>)"), "");
        clean = std::regex_replace(clean, std::regex(R"(<\|code_end\|>)"), "<|space|>");
        return clean;
    }
}

std::string trim_words(const std::string& input, const std::string& separator, size_t maxWords) {
    // Split the input string by the separator
    std::vector<std::string> words;
    size_t start = 0, end;
    while ((end = input.find(separator, start)) != std::string::npos) {
        std::string last = input.substr(start, end - start);
        if (last != "") {
            words.push_back(last);
        }
        start = end + separator.length();
    }
    std::string last = input.substr(start);
    if(last!="")
    {
        words.push_back(last); // Add the last word
    }

    // Ensure no more than maxWords are kept
    if (words.size() > maxWords) {
        words.resize(maxWords);
    }

    // Reconstruct the string with the separator
    std::ostringstream result;
    for (size_t i = 0; i < words.size(); ++i) {
        if (i > 0) result << separator;
        result << words[i];
    }

    return result.str();
}

static llama_context * ttc_ctx = nullptr; //text to codes ctx
static llama_context * cts_ctx = nullptr; //codes to speech

static TTS_VER ttsver = TTS_VER_2;
static int ttsdebugmode = 0;
static bool tts_is_quiet = false;
static std::string ttsplatformenv, ttsdeviceenv, ttsvulkandeviceenv;
static std::string last_generated_audio = "";
static std::string last_generation_settings_prompt = ""; //for caching purposes to fix ST bug
static int last_generation_settings_speaker_seed;
static int last_generation_settings_audio_seed;
static std::vector<llama_token> last_speaker_codes; //will store cached speaker
static int last_speaker_seed = -999;
static int cts_offset = 151672;
static int space_id = 151670;
static int code_terminate_id = 151670;
static int nthreads = 4;
static int tts_max_len = 4096;

int total_tts_gens = 0;

bool ttstype_load_model(const tts_load_model_inputs inputs)
{
    tts_is_quiet = inputs.quiet;

    //duplicated from expose.cpp
    int cl_parseinfo = inputs.clblast_info; //first digit is whether configured, second is platform, third is devices
    std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0);
    putenv((char*)usingclblast.c_str());
    cl_parseinfo = cl_parseinfo%100; //keep last 2 digits
    int platform = cl_parseinfo/10;
    int devices = cl_parseinfo%10;
    ttsplatformenv = "GGML_OPENCL_PLATFORM="+std::to_string(platform);
    ttsdeviceenv = "GGML_OPENCL_DEVICE="+std::to_string(devices);
    putenv((char*)ttsplatformenv.c_str());
    putenv((char*)ttsdeviceenv.c_str());
    std::string vulkan_info_raw = inputs.vulkan_info;
    std::string vulkan_info_str = "";
    for (size_t i = 0; i < vulkan_info_raw.length(); ++i) {
        vulkan_info_str += vulkan_info_raw[i];
        if (i < vulkan_info_raw.length() - 1) {
            vulkan_info_str += ",";
        }
    }
    if(vulkan_info_str!="")
    {
        ttsvulkandeviceenv = "GGML_VK_VISIBLE_DEVICES="+vulkan_info_str;
        putenv((char*)ttsvulkandeviceenv.c_str());
    }

    llama_backend_init();

    std::string modelfile_ttc = inputs.ttc_model_filename;
    std::string modelfile_cts = inputs.cts_model_filename;
    printf("\nLoading TTS Model, OuteTTS: %s \nWavTokenizer: %s \n",modelfile_ttc.c_str(),modelfile_cts.c_str());

    ttsdebugmode = inputs.debugmode;

    // tts init
    llama_model_params tts_model_params = llama_model_default_params();
    llama_context_params tts_ctx_params = llama_context_default_params();

    nthreads = inputs.threads;

    tts_max_len = inputs.ttsmaxlen;

    tts_model_params.use_mmap = false;
    tts_model_params.use_mlock = false;
    tts_model_params.n_gpu_layers = inputs.gpulayers; //offload if possible
    tts_model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER;
    tts_ctx_params.n_ctx = 8192;
    tts_ctx_params.logits_all = false;
    tts_ctx_params.offload_kqv = true;
    tts_ctx_params.n_batch = 8192;
    tts_ctx_params.n_ubatch = 512;
    tts_ctx_params.n_threads = nthreads;
    tts_ctx_params.n_threads_batch = nthreads;
    tts_ctx_params.flash_attn = inputs.flash_attention;

    llama_model * ttcmodel = llama_model_load_from_file(modelfile_ttc.c_str(), tts_model_params);
    ttc_ctx = llama_new_context_with_model(ttcmodel, tts_ctx_params);

    if (ttc_ctx == nullptr) {
        printf("\nTTS Load Error: Failed to initialize ttc context!\n");
        return false;
    }

    llama_model * ctsmodel = llama_model_load_from_file(modelfile_cts.c_str(), tts_model_params);

    tts_ctx_params.embeddings = true; //this requires embeddings instead
    cts_ctx = llama_new_context_with_model(ctsmodel, tts_ctx_params);

    if (cts_ctx == nullptr) {
        printf("\nTTS Load Error: Failed to initialize cts context!\n");
        return false;
    }

    std::vector<int> tmp = {1, 2, 3, 4};
    llama_kv_cache_clear(ttc_ctx);
    auto er = llama_decode(ttc_ctx, llama_batch_get_one(tmp.data(), tmp.size()));
    if(er!=0)
    {
        printf("\nTTS Eval returned nonzero: %d\n",er);
        return false;
    }

    const llama_vocab * ttcvocab = llama_model_get_vocab(ttcmodel);
    llama_tokens testoks = common_tokenize(ttcvocab,"<|space|>",false,true);
    if (testoks.size() == 1) {
        ttsver = TTS_VER_3;
        printf("\nUsing v0.3 mode");
        //note that the final word does NOT have a space at the end.
        space_id = testoks[0];
        testoks = common_tokenize(ttcvocab,"<|audio_end|>",false,true);
        if (testoks.size() == 1) {
            code_terminate_id = testoks[0];
        }
    } else {
        ttsver = TTS_VER_2;
        printf("\nUsing v0.2 mode");
    }

    //determine offset of <|0|>
    testoks = common_tokenize(ttcvocab,"<|0|>",false,true);
    if (testoks.size() == 1) {
        cts_offset = testoks[0];
    }

    printf("\nTTS Load Complete.\n");
    return true;
}

tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
{
    tts_generation_outputs output;

    if(ttc_ctx==nullptr || cts_ctx==nullptr)
    {
        printf("\nWarning: KCPP TTS not initialized! Make sure both TTS and WavTokenizer models are loaded.\n");
        output.data = "";
        output.status = 0;
        return output;
    }

    std::vector<llama_token> codes;
    std::vector<llama_token> guide_tokens;
    const llama_model * model_ttc = &(ttc_ctx->model);
    const llama_vocab * ttcvocab = llama_model_get_vocab(model_ttc);
    const llama_model * model_cts = &(cts_ctx->model);
    const llama_vocab * ctsvocab = llama_model_get_vocab(model_cts);
    const int ttc_n_vocab = llama_vocab_n_tokens(ttcvocab);
    std::string prompt = inputs.prompt;
    const std::string sampletext = process_text("but that is what it is",ttsver);

    // process prompt and generate voice codes
    llama_kv_cache_clear(ttc_ctx);
    llama_kv_cache_clear(cts_ctx);
    std::vector<llama_token> prompt_inp;
    prompt_init(prompt_inp, ttcvocab);

    int speaker_seed = inputs.speaker_seed;
    int audio_seed = inputs.audio_seed;
    if (speaker_seed <= 0 || speaker_seed==0xFFFFFFFF)
    {
        speaker_seed = (((uint32_t)time(NULL)) % 1000000u);
    }
    if (audio_seed <= 0 || audio_seed==0xFFFFFFFF)
    {
        audio_seed = (((uint32_t)time(NULL)) % 1000000u);
    }
    if(ttsdebugmode==1 && !tts_is_quiet)
    {
        printf("\nUsing Speaker Seed: %d", speaker_seed);
        printf("\nUsing Audio Seed: %d", audio_seed);
    }

    std::mt19937 tts_rng(audio_seed);
    std::mt19937 speaker_rng(speaker_seed);


    int n_decode = 0;
    int n_predict = 2048; //will be updated later
    bool next_token_uses_guide_token = true;

    // convert the input text into the necessary format expected by OuteTTS
    std::string prompt_clean = process_text(prompt,ttsver);
    bool empty_check = (process_text(prompt,TTS_VER_2).size()==0); //if there is no audio, will crash, so prevent that

    //further clean it by keeping only the last 300 words
    prompt_clean = trim_words(prompt_clean,(ttsver==TTS_VER_3?"<|space|>":"<|text_sep|>"),300);

    if(empty_check)
    {
        //no input
         if(!tts_is_quiet)
        {
            printf("\nTTS sent empty input.\n");
            last_generated_audio = "";
            output.data = last_generated_audio.c_str();
            output.status = 1;
            return output;
        }
    }

    double ttstime = 0;
    timer_start();


    if(!tts_is_quiet && ttsdebugmode==1)
    {
        printf("\nInput: %s\n", prompt_clean.c_str());
    }

    llama_token newlineid = common_tokenize(ttcvocab,"\n",false,true)[0];

    //2 passes. first pass, we generate the speaker voice if required, then cache it for reuse
    //second pass, we use the speaker snipper to align output voice to match the desired speaker
    if(speaker_seed>0) //first pass
    {
        //if we have a cached speaker, reuse it
        if(last_speaker_seed==speaker_seed && !last_speaker_codes.empty())
        {
            //able to proceed, do nothing
            if(!tts_is_quiet && ttsdebugmode==1)
            {
                printf("\nReuse speaker ID=%d (%d tokens)...", last_speaker_seed, last_speaker_codes.size());
            }
        } else if (speaker_seed>=1 && speaker_seed<=5){ //special seeds
            std::string speaker = "";
            switch(speaker_seed)
            {
                case 1:
                speaker = format_audiotokens("but<|t_0.31|><|code_start|><|1023|><|1474|><|17|><|121|><|1362|><|744|><|438|><|1319|><|744|><|1419|><|1246|><|923|><|1338|><|406|><|939|><|975|><|1491|><|965|><|1212|><|248|><|794|><|464|><|830|><|code_end|>\nthat<|t_0.13|><|code_start|><|1578|><|1773|><|660|><|1074|><|221|><|1803|><|142|><|914|><|798|><|485|><|code_end|>\nis<|t_0.11|><|code_start|><|737|><|794|><|1288|><|182|><|895|><|1653|><|448|><|471|><|code_end|>\nwhat<|t_0.12|><|code_start|><|1734|><|1306|><|779|><|490|><|525|><|1028|><|37|><|1633|><|1353|><|code_end|>\nit<|t_0.09|><|code_start|><|1343|><|898|><|270|><|1035|><|94|><|1409|><|388|><|code_end|>\nis<|t_0.23|><|code_start|><|694|><|695|><|577|><|692|><|1047|><|388|><|28|><|905|><|1155|><|50|><|1629|><|1775|><|1711|><|1729|><|404|><|1027|><|344|><|code_end|>",ttsver);
                break;
                case 2:
                speaker = format_audiotokens("but<|t_0.45|><|code_start|><|920|><|1824|><|1138|><|1387|><|1096|><|1712|><|1642|><|810|><|1685|><|620|><|954|><|584|><|23|><|1467|><|509|><|659|><|1598|><|465|><|567|><|1440|><|3|><|476|><|740|><|288|><|419|><|1440|><|1477|><|254|><|25|><|811|><|882|><|476|><|246|><|246|><|code_end|>\nthat<|t_0.17|><|code_start|><|419|><|1690|><|208|><|1044|><|300|><|1100|><|375|><|1222|><|371|><|1045|><|637|><|1719|><|314|><|code_end|>\nis<|t_0.12|><|code_start|><|319|><|1131|><|794|><|1103|><|1296|><|1615|><|1587|><|233|><|863|><|code_end|>\nwhat<|t_0.16|><|code_start|><|793|><|902|><|391|><|946|><|437|><|95|><|1133|><|110|><|58|><|853|><|1283|><|449|><|code_end|>\nit<|t_0.12|><|code_start|><|774|><|239|><|974|><|213|><|1095|><|1612|><|101|><|1569|><|882|><|code_end|>\nis<|t_0.32|><|code_start|><|1131|><|529|><|1144|><|774|><|1114|><|483|><|693|><|648|><|1112|><|1470|><|1112|><|319|><|1294|><|1417|><|1660|><|729|><|1789|><|1413|><|1728|><|554|><|273|><|736|><|640|><|1549|><|code_end|>",ttsver);
                break;
                case 3:
                speaker = format_audiotokens("but<|t_0.21|><|code_start|><|348|><|1776|><|1620|><|1262|><|118|><|288|><|258|><|1407|><|1331|><|1102|><|664|><|1300|><|1647|><|1536|><|71|><|23|><|code_end|>        \nthat<|t_0.19|><|code_start|><|3|><|1740|><|1253|><|1122|><|549|><|715|><|718|><|657|><|1136|><|1247|><|517|><|1333|><|815|><|634|><|code_end|>\nis<|t_0.12|><|code_start|><|1330|><|839|><|753|><|1826|><|1602|><|50|><|1441|><|889|><|948|><|code_end|>\nwhat<|t_0.16|><|code_start|><|899|><|869|><|250|><|894|><|876|><|1471|><|1308|><|1436|><|1328|><|1700|><|1425|><|1330|><|code_end|>\nit<|t_0.12|><|code_start|><|1027|><|1162|><|1344|><|1170|><|86|><|1562|><|1575|><|176|><|1186|><|code_end|>\nis<|t_0.25|><|code_start|><|361|><|1533|><|1697|><|903|><|333|><|1232|><|1337|><|1611|><|1196|><|0|><|1328|><|1245|><|1718|><|1635|><|1616|><|1599|><|1363|><|962|><|328|><|code_end|>",ttsver);
                break;
                case 4:
                speaker = format_audiotokens("but<|t_0.20|><|code_start|><|686|><|1288|><|1251|><|1428|><|481|><|702|><|1812|><|829|><|81|><|756|><|76|><|104|><|952|><|1723|><|1632|><|code_end|>\nthat<|t_0.20|><|code_start|><|1006|><|1067|><|1614|><|1810|><|887|><|43|><|1192|><|106|><|400|><|43|><|730|><|660|><|186|><|87|><|467|><|code_end|>\nis<|t_0.27|><|code_start|><|648|><|1625|><|9|><|685|><|243|><|106|><|996|><|990|><|228|><|809|><|1009|><|2|><|806|><|1325|><|1332|><|1766|><|202|><|725|><|416|><|822|><|code_end|>\nwhat<|t_0.36|><|code_start|><|1287|><|328|><|1241|><|1661|><|1651|><|1708|><|1740|><|1685|><|1715|><|1787|><|1381|><|197|><|1769|><|525|><|1000|><|234|><|364|><|115|><|212|><|632|><|1153|><|228|><|73|><|1002|><|1800|><|1277|><|1117|><|code_end|>\nit<|t_0.40|><|code_start|><|1830|><|1199|><|1282|><|1163|><|1195|><|1752|><|1092|><|1481|><|1003|><|513|><|1639|><|1805|><|1485|><|1645|><|195|><|1464|><|181|><|195|><|123|><|87|><|433|><|878|><|170|><|1265|><|375|><|1708|><|1739|><|1519|><|1185|><|1099|><|code_end|>\nis<|t_0.76|><|code_start|><|1748|><|1422|><|276|><|1337|><|1322|><|1519|><|1779|><|1067|><|1724|><|891|><|1205|><|1419|><|1144|><|1667|><|591|><|1003|><|1543|><|566|><|1390|><|426|><|1824|><|182|><|1138|><|52|><|129|><|1056|><|155|><|1056|><|1298|><|919|><|155|><|125|><|500|><|1022|><|571|><|315|><|400|><|100|><|617|><|295|><|757|><|324|><|592|><|1298|><|1310|><|57|><|876|><|1175|><|1353|><|1770|><|1649|><|1828|><|1637|><|362|><|1744|><|884|><|1027|><|code_end|>",ttsver);
                break;
                case 5:
                speaker = format_audiotokens("but<|t_0.68|><|code_start|><|1761|><|1164|><|1543|><|1677|><|1120|><|1634|><|1496|><|1639|><|1717|><|1306|><|1016|><|1713|><|976|><|1474|><|1817|><|976|><|1595|><|1255|><|584|><|1440|><|1121|><|287|><|91|><|44|><|246|><|160|><|1233|><|247|><|776|><|44|><|246|><|12|><|1352|><|866|><|168|><|71|><|246|><|246|><|804|><|933|><|168|><|193|><|44|><|1663|><|1097|><|411|><|1393|><|1326|><|21|><|342|><|118|><|code_end|>\nthat<|t_0.17|><|code_start|><|220|><|1750|><|1160|><|260|><|1738|><|300|><|291|><|989|><|147|><|1150|><|947|><|803|><|930|><|code_end|>\nis<|t_0.15|><|code_start|><|798|><|1632|><|412|><|1084|><|1166|><|1014|><|416|><|1637|><|415|><|1|><|1660|><|code_end|>\nwhat<|t_0.21|><|code_start|><|1412|><|707|><|572|><|1092|><|898|><|673|><|770|><|1787|><|994|><|983|><|1096|><|221|><|924|><|1323|><|1726|><|387|><|code_end|>\nit<|t_0.12|><|code_start|><|798|><|665|><|513|><|695|><|1410|><|337|><|237|><|1717|><|1353|><|code_end|>\nis<|t_0.24|><|code_start|><|1355|><|1084|><|65|><|1422|><|674|><|1280|><|940|><|1752|><|396|><|1431|><|1761|><|957|><|1440|><|634|><|333|><|1627|><|821|><|788|><|code_end|>",ttsver);
                break;
            }
            last_speaker_codes = common_tokenize(ttcvocab, speaker, false, true);
            last_speaker_seed = speaker_seed;
            if(!tts_is_quiet && ttsdebugmode==1)
            {
                printf("\nSpecial ID=%d (%d tokens)...", last_speaker_seed, last_speaker_codes.size());
            }
        } else {
            //generate the voice texture of our new speaker
            last_speaker_codes.clear();
            guide_tokens = prepare_guide_tokens(ttcvocab,sampletext,ttsver);
            if(!tts_is_quiet && ttsdebugmode==1)
            {
                printf("\nGuide Tokens (%d tokens):\n", guide_tokens.size());
                const std::string inp_txt = common_detokenize(ttc_ctx, guide_tokens, true);
                printf("%s,", inp_txt.c_str());
                printf("\n");
            }
            prompt_add(prompt_inp, ttcvocab, sampletext, false, true);
            prompt_add(prompt_inp, ttcvocab, "<|text_end|>\n<|audio_start|>\n", false, true);
            if(!tts_is_quiet && ttsdebugmode==1)
            {
                printf("\nPrepare new speaker (%d input tokens)...\n", prompt_inp.size());
                print_tok_vec(prompt_inp);
            }
            kcpp_embd_batch tts_batch = kcpp_embd_batch(prompt_inp, 0, false, false);
            auto evalok = (llama_decode(ttc_ctx, tts_batch.batch)==0);
            if (!evalok) {
                printf("\nError: TTS prompt batch processing failed\n");
                output.data = "";
                output.status = 0;
                return output;
            }

            while (n_decode <= n_predict)
            {
                float * logits = llama_get_logits(ttc_ctx);

                //use creative settings to generate speakers
                const int topk = 20;
                const float top_p = 1.0f;
                const float temp = 1.2f;
                llama_token new_token_id = kcpp_quick_sample(logits,ttc_n_vocab,std::vector<int32_t>(),1.0,top_p,topk,temp,speaker_rng);

                //guide tokens help prevent hallucinations by forcing the TTS to use the correct word
                if(next_token_uses_guide_token && !llama_vocab_is_control(ttcvocab, new_token_id) && !llama_vocab_is_eog(ttcvocab, new_token_id))
                {
                    if(!guide_tokens.empty())
                    {
                        llama_token guide_token = guide_tokens[0];
                        guide_tokens.erase(guide_tokens.begin());
                        new_token_id = guide_token; //ensure correct word fragment is used
                    } else {
                        n_decode = n_predict; //stop generation
                    }
                }

                //this is the token id that always precedes a new word
                next_token_uses_guide_token = (new_token_id == newlineid);
                last_speaker_codes.push_back(new_token_id);

                // is it an end of generation? -> mark the stream as finished
                if (llama_vocab_is_eog(ttcvocab, new_token_id) || n_decode >= n_predict) {
                    break;
                }

                n_decode += 1;
                std::vector<llama_token> next = {new_token_id};
                llama_batch batch = llama_batch_get_one(next.data(), next.size());

                // evaluate the current batch with the transformer model
                if (llama_decode(ttc_ctx, batch)) {
                    printf("\nError: TTS code generation failed!\n");
                    output.data = "";
                    output.status = 0;
                    return output;
                }
            }

            //trim everything after final <|code_end|> for v2, or <|audio_end|> offset-1 replaced with <|space|> for v3
            auto it = std::find(last_speaker_codes.rbegin(), last_speaker_codes.rend(), code_terminate_id);
            if (it != last_speaker_codes.rend()) {
                // Erase elements after the found token (inclusive)
                last_speaker_codes.erase(it.base(), last_speaker_codes.end());
                if(ttsver==TTS_VER_3 && last_speaker_codes.size()>2)
                {
                    last_speaker_codes.pop_back();
                    last_speaker_codes.pop_back();
                    last_speaker_codes.push_back(space_id);
                }
            }
            last_speaker_seed = speaker_seed;
            if(!tts_is_quiet && ttsdebugmode==1)
            {
                printf("\nNew speaker ID=%d created (%d tokens)...", last_speaker_seed, last_speaker_codes.size());
                const std::string inp_txt = common_detokenize(ttc_ctx, last_speaker_codes, true);
                printf("\n%s\n", inp_txt.c_str());
            }
        }
        guide_tokens.clear();
        llama_kv_cache_clear(ttc_ctx);
        prompt_init(prompt_inp, ttcvocab);
        next_token_uses_guide_token = true;
    }

    //second pass: add the speaker before the actual prompt
    guide_tokens = prepare_guide_tokens(ttcvocab,prompt_clean,ttsver);
    if(!tts_is_quiet && ttsdebugmode==1)
    {
        printf("\nGuide Tokens (%d tokens):\n", guide_tokens.size());
        const std::string inp_txt = common_detokenize(ttc_ctx, guide_tokens, true);
        printf("%s", inp_txt.c_str());
        printf("\n");
    }
    if(speaker_seed > 0)
    {
        prompt_clean = sampletext + (ttsver==TTS_VER_3?"<|space|>":"<|text_sep|>") + prompt_clean;
    }
    prompt_add(prompt_inp, ttcvocab, prompt_clean, false, true);

    if(!tts_is_quiet)
    {
        printf("\nTTS Processing (%d input tokens)...\n", prompt_inp.size());
    }

    prompt_add(prompt_inp, ttcvocab, "<|text_end|>\n<|audio_start|>\n", false, true);

    if(!last_speaker_codes.empty() && speaker_seed > 0) //apply speaker voice output
    {
        prompt_add(prompt_inp, last_speaker_codes);
        prompt_add(prompt_inp, ttcvocab, "\n", false, true);
    }

    if(!tts_is_quiet && ttsdebugmode==1)
    {
        printf("\nDUMP TTS PROMPT (%d tokens):\n", prompt_inp.size());
        print_tok_vec(prompt_inp);
        const std::string inp_txt = common_detokenize(ttc_ctx, prompt_inp, true);
        printf("\n%s\n", inp_txt.c_str());
    }

    //create batch with tokens for decoding prompt processing
    kcpp_embd_batch tts_batch = kcpp_embd_batch(prompt_inp, 0, false, false);

    auto evalok = (llama_decode(ttc_ctx, tts_batch.batch)==0);
    if (!evalok) {
        printf("\nError: TTS prompt batch processing failed\n");
        output.data = "";
        output.status = 0;
        return output;
    }

    // main loop
    n_decode = 0;
    n_predict = tts_max_len; //max 4096 tokens

    while (n_decode <= n_predict)
    {
        float * logits = llama_get_logits(ttc_ctx);

        //use predictable settings to generate voice
        const int topk = 4;
        const float temp = 0.75f;
        const float top_p = 1.0f;
        llama_token new_token_id = kcpp_quick_sample(logits,ttc_n_vocab,std::vector<int32_t>(),1.0,top_p,topk,temp,speaker_rng);

        //guide tokens help prevent hallucinations by forcing the TTS to use the correct word
        if(next_token_uses_guide_token && !llama_vocab_is_control(ttcvocab, new_token_id) && !llama_vocab_is_eog(ttcvocab, new_token_id))
        {
            if(!guide_tokens.empty())
            {
                llama_token guide_token = guide_tokens[0];
                guide_tokens.erase(guide_tokens.begin());
                new_token_id = guide_token; //ensure correct word fragment is used
            } else {
                n_decode = n_predict; //end generation
            }
        }

        //this is the token id that always precedes a new word
        next_token_uses_guide_token = (new_token_id == newlineid);
        codes.push_back(new_token_id);

        // is it an end of generation? -> mark the stream as finished
        if (llama_vocab_is_eog(ttcvocab, new_token_id) || n_decode >= n_predict) {
            break;
        }

        n_decode += 1;
        std::vector<llama_token> next = {new_token_id};
        llama_batch batch = llama_batch_get_one(next.data(), next.size());

        // evaluate the current batch with the transformer model
        if (llama_decode(ttc_ctx, batch)) {
            printf("\nError: TTS code generation failed!\n");
            output.data = "";
            output.status = 0;
            return output;
        }
        if(!tts_is_quiet)
        {
            printf("\rTTS Generating (%d outputs)", n_decode);
        }
    }

    if(!tts_is_quiet && ttsdebugmode==1)
    {
        const std::string inp_txt = common_detokenize(ttc_ctx, codes, true);
        printf("\nGenerated %d Codes: '%s'\n",codes.size(), inp_txt.c_str());
    }

    // remove all non-audio tokens (i.e. < 151672 || > 155772)
    codes.erase(std::remove_if(codes.begin(), codes.end(), [](llama_token t) { return t < cts_offset || t > (cts_offset+4100); }), codes.end());

    for (auto & token : codes) {
        token -= cts_offset;
    }

    const int n_codes = codes.size();
    if(n_codes<=1)
    {
        printf("\nWarning: No Audio Tokens Produced!\n");
        last_generated_audio = "";
        output.data = last_generated_audio.c_str();
        output.status = 1;
        return output;
    }
    kcpp_embd_batch codebatch = kcpp_embd_batch(codes,0,false,true);
    printf("\nRunning Vocoder (%d AudioTokens)", codes.size());

    if (llama_decode(cts_ctx, codebatch.batch) != 0) {
        printf("\nError: TTS vocoder generation failed!\n");
        output.data = "";
        output.status = 0;
        return output;
    }
    else
    {
        // spectral operations
        const int n_embd = llama_model_n_embd(model_cts);
        const float * embd = llama_get_embeddings(cts_ctx);
        std::vector<float> audio = embd_to_audio(embd, n_codes, n_embd, nthreads);

        const int n_sr = 24000; // original sampling rate
        const int t_sr = 24000; //final target sampling rate

        // zero out first x seconds depending on whether its seeded
        const int cutout = t_sr/4;

        //audio = resample_wav(audio,n_sr,t_sr); //resample to 16k

        if(audio.size()>cutout+16)
        {
            for (int i = 0; i < cutout; ++i) {
                audio[i] = 0.0f;
            }
            //add some silence at the end
            for (int i = 0; i < cutout; ++i) {
                audio.push_back(0.0f);
            }
        }
        else
        {
            printf("\nWarning: TTS vocoder generated nothing!\n");
            last_generated_audio = "";
            output.data = last_generated_audio.c_str();
            output.status = 1;
            return output;
        }

        last_generated_audio = save_wav16_base64(audio, t_sr);
        ttstime = timer_check();

        printf("\nTTS Generated %d audio tokens in %.2fs.\n",(int) codes.size(),ttstime);

        output.data = last_generated_audio.c_str();
        output.status = 1;

        last_generation_settings_audio_seed = inputs.audio_seed;
        last_generation_settings_speaker_seed = inputs.speaker_seed;
        last_generation_settings_prompt = std::string(inputs.prompt);
        total_tts_gens += 1;

        return output;
    }
}